Pulsar striped wind emission

A multi-wavelength and population synthesis perspective

J. Pétri¹ M. Sautron¹ D. Mitra² S. Guillot³ L. Guillemot⁴ and others

¹Observatoire astronomique (ObAS), Strasbourg, France

²NCRA, Pune, India

³IRAP, Toulouse, France

⁴LPC2E, Orléans, France

HONEST - 27th Nov. 2024

Objectives & Methods

Population synthesis

Objectives

- constrain the geometry of the pulsar and observer line of sight.
- identify the γ -ray emission mechanisms.
- localize the associated photon production sites.

Methods

- good sample of young radio-loud γ -ray pulsar light-curves.
- some with additional radio polarization constraints from RVM model.
- but RVM not useable for millisecond pulsars (MSP) (use only γ -rays).
- γ -ray emission based on the striped wind.

Results

- γ -ray light-curves and radio polarization modelling to deduce the geometry.
- study of the whole γ -ray pulsar population in the striped wind framework.

3/15

Université

de Strasbou

Possible sites for pulsed emission

Fig.: Emission models.

Fig.: Pulsar striped wind.

Basic picture

- magnetosphere filled with e[±] plasma corotating with the neutron star up to the light-cylinder.
- corotation charge $\rho_{\rm GJ} \approx -2 \, \varepsilon_0 \, \vec{\Omega} \cdot \vec{B}$.
- no acceleration in regions where $\rho = \rho_{\rm GJ}$ because $E_{\parallel} = 0$.
- but acceleration in regions where $\rho \neq \rho_{\rm GJ}$ because $E_{\parallel} \neq 0$.

Four important sites

- polar cap: star surface R.
- slot gap: from R to $r_{\rm L}$.
- outer gap: from null-line to $r_{\rm L}$.
- striped wind: outside $r_{\rm L}$.

Location of gaps tells you where emission comes from.

Jérôme Pétri (ObAS)

4/15

Fig.: Striped wind emission model (Mochol, 2017).

Fig.: Pulsar striped wind current.

Essentially two parameters to fit

- magnetic dipole inclination α .
- **2** observer line of sight inclination $\zeta (= \alpha + \beta)$.

Computation of γ -ray pulse profile depending on α and ζ .

Jérôme Pétri (ObAS)

Pulsar striped wind emission

γ -ray atlas (striped wind) depending on $\{\alpha, \zeta\}$

Fig.: γ -ray photons coming from the striped wind (outside the magnetosphere).

(Pétri, 2024)

Atlas of γ -ray light curves for $\alpha = \{15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 75^{\circ}, 90^{\circ}\}$ from left to right column and $\zeta = \{0^{\circ}, ..., 90^{\circ}\}$ in steps of 10° in the format $\{\alpha, \zeta\}$.

Young pulsar sample: Best fit from polarization and γ -rays

Fig.: Best fit from polarization and γ -rays.

(Pétri & Mitra, 2021)

Jérôme Pétri (ObAS)

Young pulsar sample: Best fit from γ -rays only

Fig.: Best fit parameters and γ -ray light-curves for the second part of the young radio loud γ -ray pulsar sample not having usable RVM fits.

(Pétri & Mitra, 2021)

Jérôme Pétri (ObAS)

MSP pulsar sample: Best fit from γ -rays only

(Benli et al., 2021)

9/15

Radio and γ -ray pulsar populations

- evolve isolated pulsars according to state-of-the-art modelling (force-free magnetosphere, magnetic obliquity evolution, magnetic field decay).
- $P(t), \chi(t), B(t), \vec{r}(t).$
- compute radio and γ-ray fluxes.
- use telescope sensitivities for detectability.

(Sautron et al., 2024)

Jérôme Pétri (ObAS)

10/15

Fig.: $P - \dot{P}$ diagram of the γ -ray pulsars, observation in blue & simulations in green.

Radio and γ -ray pulsar population

- radio and γ -ray pulsars well reproduced by the model.
- γ -ray light curve peak separation Δ statistics similar to observations.
- increasing Fermi/LAT sensitivity by $\times 10$ leads to $7\times$ more $\gamma\text{-ray pulsars}$ detected.

Fig.: γ -ray peak separation, observations in blue vs simulations in red.

Fig.: γ -ray pulsars position in the Milky Way, in red for Fermi sensitivity and in green for a 10 times higher sensitivity instrument.

(Sautron et al., 2024)

Université de Strasbourg

Statistics of radio and γ -ray pulsars: a simple model

- simulate a sample of 10 millions pulsars with an isotropic or uniform distribution of obliquity *X* but an isotropic distribution in viewing angle *ζ*.
- no spin evolution, no spatial velocity, no spatial distribution.
- population not evolved from birth to present time.

Fig.: γ -ray peak separation from the 3PC observations (Obs) in green vs. model prediction for isotropic (Iso) obliquity distribution in orange and uniform (Uni) distribution in blue.

Fig.: Relation between time lag δ and peak separation Δ from 3PC.

The simplest striped wind model predicts

$$\delta + \Delta/2 \approx 0.5$$
 .

(Pétri, 2024)

Fig.: Fraction of radio-only pulsars (r), γ -only pulsars (γ), and radio-loud γ -ray pulsars (r+ γ) vs radio beam cone half-opening angle, ρ . Solid/dashed line for isotropic/uniform χ distribution.

Fig.: Fraction of radio-loud γ -ray pulsars with one peak $(\gamma + r)/\gamma$ and two peaks $(\gamma + 2r)/\gamma$ and a fraction of invisible pulsars (not detected in either r or γ).

- radio beam opening angle ρ controls the fraction of radio pulsars detected.
- a lot more γ -ray pulsars detected than radio pulsars.

(Pétri, 2024)

Results of time-aligned radio and γ -ray pulse profiles

- very efficient to constrain the geometry of the magnetic dipole.
- radio polarization reduces even more the uncertainties.
- striped wind model for γ -ray consistent with multi-wavelength modelling.
- γ -ray pulsar population from 3PC reproduced with the striped wind.

Perspectives

- extension to VHE in the TeV range.
- compute the phase-resolved spectra in GeV/TeV.
- 4FGL catalogue contains hundredth of unknown sources: how many γ-ay pulsars?

Thank you

Benli O., Pétri J., Mitra D., 2021, A&A, 647, A101, publisher: EDP Sciences
Mochol I., 2017, arXiv:1702.00720 [astro-ph], 446, 135, arXiv: 1702.00720
Pétri J., 2024, A&A, 687, A169, publisher: EDP Sciences
Pétri J., Mitra D., 2021, A&A, 654, A106
Sautron M., Pétri J., Mitra D., Dirson L., 2024, A&A, 691, A349, publisher: EDP Sciences