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☞ Relativistic MHD outflow that transport

pulsar spindown losses to the nebula

☞ Complex electromagnetic processes

take place in the wind

☞ At large distance from the PSR, the

wind is apparently dominated by kinetic

energy
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Emission from Pulsars Winds

☞ The radiation losses in the wind zone

are much smaller that in the nebula

☞ Wind moves with enormous bulk

Lorentz factor Γwind ∼ 10
3
− 10

6
, but

since wind solid angle is large, there is

no Doppler boosting like in jets

☞ Wind acceleration is accompanied with

adiabatic cooling, thus synchrotron

emission from the wind is strongly

suppressed and radiated at lower fre-

quencies

ℏωsyn ∝ Γwind
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☞ IC emission from the wind is hard to

distinguish from the nebula emission,

unless it features a specific time pat-

tern...

Naima fit for Crab Nebula
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Pulsed IC Emission from Wind

☞ Energy–Angular Momentum losses of

pulsar:

Ėsd = ΩṀsd

☞ Energy carried by an electron:

Γwmc
2

☞ Angular Momentum carried by an elec-

tron:

Γwmr⊥v

☞ Pulsar wind trajectory when σ ≪ 1:

r⊥ =
c

Ω
= RL

Aharonian+2012
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Summary

☞ Pulsar winds carry almost the entire rotation energy losses of

pulsars to sub-pc distances

☞ We expect that complicated processes occur along the way

leading to an efficient dissipation of electromagnetic energy

☞ However winds are not efficient emitters, thus their emission

can be effectively hidden by the nebula dominant contribution

☞ Synchrotron emission is suppressed by luminosity and peak-

ing frequency (because of adiabatic cooling and weakening of

the magnetic field)

☞ Conservation of angular momentum implies that pulsar wind

can up-scatter photons emitted by the pulsar

☞ Under certain conditions (most critically early wind acceler-

ation) the wind IC emission may appear as a pulsed signal

correlated with the X-ray band


