a) 3D PIC simulation of the global pulsar magnetosphere
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b) magnetic reconnection in the plasmoid

unstable current sheet (slice from global 3D PIC)

d) intermittent polar cap discharge (2D PIC)
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c) reconnecting current sheet (2D PIC)
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THEORETICAL (AND NUMERICAL) APPROACHES

Magnetized plasma without inertia

v/ OK in highly magnetized regions

- breaks when the existence of plasma is not a given, and in
reconnection

* typical apps: neutron star magnetospheres, jets

Plasma as an ideal collisional fluid

\/e.g., no thermal conduction, pressure is same in all
directions; OK as a first approximation for global dynamics

- does not describe non-thermal particles

* typical apps: accretion flows

First-principles description for collisionless plasmas

v includes non-ideal effects (e.g., pressure is different along
and across magnetic field, heat flux), describes particle
acceleration

- computationally expensive and usually allows limited
dynamic range

* typical apps: plasma instabilities, magnetospheres




PLASMA PHYSICS ON A COMPUTER: (GR)(R)PIC

° Solving Maxwell’s equations on the grid

E, B

(GR) = general relativistic
(R) = radiation reaction force, photon emission, multiple pair production mechanisms
PIC = particle-in-cell



THREE-DIMENSIONAL MAGNETOSPHERES ;.. along j
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RECONNECTION IN PULSAR MAGNETOSPHERES

B~ 10°G, ¢ = B?*/(4np,c?) > 1

Reconnection electric field accelerates particles,
synchrotron cooling is important on the same
timescale

Pairs accelerate beyond the radiation reaction
limit, upto y ~ few X o

Highest energy photons are beamed along the
upstream magnetic field, consistent with the
beaming of GeV lightcurves

h,.. ~ 16 MeV - (a/ ysyn)

Chernoglazov, Hakobyan, Philippov, 2023 (ApJ)




RECONNECTION IN PULSAR MAGNETOSPHERES
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RECONNECTION IN PULSAR MAGNETOSPHERES
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RECONNECTION IN PULSAR MAGNETOSPHERES

B~ 10°G, 6 = B*/(4np, c?) > 1

Reconnection electric field accelerates particles,
synchrotron cooling is important on the same

timescale, gives burnoff” limit Ysyn @ particle location

upstream

current sheet

Pairs accelerate beyond the radiation reaction
limit, uptoy ~ few X o

Highest energy photons are beamed along the
upstream magnetic field, consistent with the
beaming of GeV lightcurves
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NEW FRONTIER: MULTI-TEV FROM VELA PULSAR [IN PREP]

The H.E.S.S. Collaboration, Nature (2023)
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R, =, Prediction: CTA will see moderately energetic y-ray pulsars as

multi-TeV sources




NEW FRONTIER: MULTI-TEV FROM VELA PULSAR [IN PREP]
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NEW FRONTIER: MULTI-TEV FROM VELA PULSAR [IN PREP]
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Conclusions

1. Origin of pulsar emission has been a puzzle since 1967 - kinetic plasma simulations
are finally addressing this from first principles.

2. Current sheet is an effective particle accelerator. Particles in the sheet emit
powerful gamma-ray mainly via synchrotron mechanism. Highest energy TeV
photons can be produced in the current sheet as well.



