

Philippov & Kramer, 2022, Annual Reviews of Astronomy & Astrophysics

Pulsar magnetospheres and their radiation

Sasha Philippov (Maryland)

with:

ΟΝ

UND

F

0

Α

Benoit Cerutti (*Grenoble*) Sasha Chernoglazov (*Maryland*) Sam Gralla (*Arizona*) Hayk Hakobyan (*Columbia*) Anatoly Spitkovsky (*Princeton*) Andrey Timokhin (*Zielona Gora*) Libby Tolman (*IAS, Flatiron*) Dmitri Uzdensky (*Colorado*)

SCEECS

THEORETICAL (AND NUMERICAL) APPROACHES

Force-free electrodynamics

Magnetohydrodynamics

Kinetics

- \sqrt{OK} in highly magnetized regions
- breaks when the existence of plasma is not a given, and in reconnection
- typical apps: neutron star magnetospheres, jets

Plasma as an ideal collisional fluid

- directions; OK as a first approximation for global dynamics
- $\sqrt{e.g.}$, no thermal conduction, pressure is same in all - does not describe non-thermal particles • typical apps: accretion flows

First-principles description for collisionless plasmas

- and across magnetic field, heat flux), describes particle acceleration
- computationally expensive and usually allows limited dynamic range
- typical apps: plasma instabilities, magnetospheres

Magnetized plasma without inertia

PLASMA PHYSICS ON A COMPUTER: (GR)(R)PIC

PIC = particle-in-cell

THREE-DIMENSIONAL MAGNETOSPHERES slice along j

Unstable current sheets are major locations where magnetic dissipation occurs

• $B \sim 10^5 \,\text{G}, \ \sigma = B^2/(4\pi\rho_m c^2) \gg 1$

- Reconnection electric field accelerates particles, synchrotron cooling is important on the same timescale
- Pairs accelerate beyond the radiation reaction limit, up to $\gamma \sim {\rm few} \times \sigma$
- Highest energy photons are beamed along the upstream magnetic field, consistent with the beaming of GeV lightcurves

$$h\nu_{\rm max} \approx 16 \,\,{\rm MeV} \cdot \left(\sigma/\gamma_{\rm syn}\right)$$

Particle Spectrum

Photon Spectrum

- $B \sim 10^5 \,\mathrm{G}, \ \sigma = B^2/(4\pi\rho_m c^2) \gg 1$
- Reconnection electric field accelerates particles, synchrotron cooling is important on the same timescale, gives "burnoff" limit γ_{syn}
- Pairs accelerate beyond the radiation reaction limit, up to $\gamma \sim {\rm few} \times \sigma$
- Highest energy photons are beamed along the upstream magnetic field, consistent with the beaming of GeV lightcurves

$$h\nu_{\rm max} \approx 16 \,\,{\rm MeV} \cdot \left(\sigma/\gamma_{\rm syn}\right)$$

NEW FRONTIER: MULTI-TEV FROM VELA PULSAR [IN PREP]

ightarrow

 \bullet

The H.E.S.S. Collaboration, Nature (2023)

Bransgrove et al, 2023 (ApJL)

$$\gamma_{\rm syn} \approx 10^5 \implies \sigma \approx {\rm few} \times 10^7$$

$$\uparrow$$
 $\varepsilon_{\rm ph} = 16 \,{\rm MeV} \cdot \left(\sigma/\gamma_{\rm syn}\right)$

$$m_e c^2 \gamma_{\rm max} = m_e c^2 \sigma \sim 10 {
m TeV}$$

Pair density is low because "return"-current discharge sends most of the plasma into the star

Most of the plasma is produced in the current sheet

Prediction: CTA will see moderately energetic γ -ray pulsars as multi-TeV sources

NEW FRONTIER: MULTI-TEV FROM VELA PULSAR [IN PREP]

$$\gamma_{\rm syn} \approx 10^5 \implies \sigma \approx {\rm few} \times 10^6$$

 $\epsilon_{\rm ph} = 16 {\rm MeV} \cdot \left(\sigma/\gamma_{\rm syn}\right)$

 $m_e c^2 \gamma_{\rm max} = m_e c^2 \sigma \sim 10 {\rm TeV}$

- Pair density is low because "return"-current discharge sends most of the plasma into the star
- Most of the plasma is produced in the current sheet

NEW FRONTIER: MULTI-TEV FROM VELA PULSAR [IN PREP]

Particle Spectrum

Photon Spectrum

Conclusions

- 1. Origin of pulsar emission has been a puzzle since 1967 kinetic plasma simulations are finally addressing this from first principles.
- 2. Current sheet is an effective particle accelerator. Particles in the sheet emit powerful gamma-ray mainly via synchrotron mechanism. Highest energy TeV photons can be produced in the current sheet as well.