VHE emissions from pulsars

Insight from analytic approaches

Claire Guépin-Detrigne, Laboratoire Univers et Particules de Montpellier, CNRS

VHE emissions from pulsars - Insight from analytic approaches 2

Observations to adjust/predictions

- Light curves, Multi-wavelength spectra

Physics to probe

- Magnetosphere and wind morphology / geometry
- Interplay between particles and electromagnetic fields: propagation, acceleration, radiation, interactions

Setup - morphology magnetosphere & wind

General properties

- Vacuum: Deutsch55. Plasma? Aligned rotator e.g. Goldreich&Julian69, Michel73
- Inclination? Simulations e.g. Force-Free, MHE, PIC, Machine Learning
- General benchmark solutions: uncertain properties, closed field lines, current sheet thickness, dissipation?
- Acceleration: gaps, separatrix, current sheet e.g. Bogovalov99, Petri16, Vigano+19

Information about fields and plasma + acceleration and radiation regions

Gamma-ray light-curves: geometry of radiation regions

→ constraints ex. inclination angle, ex. Iniguez-Pascual et al., arXiv:2404.01926

Setup - particles and processes

Primary particles

- Electrons, photons. [Protons or nuclei]
- Propagation from the NS surface, acceleration by unscreen parallel electric field, or magnetic reconnection

Secondary particles

- Electrons & positron pairs, photons. [Neutrons, pions, muons, etc.]
- Pairs expected to be produced by cascades close to the NS surface

Radiative/interaction processes: synchro-curvature, inverse Compton, pair production, photo-hadronic

H.E.S.S. Collaboration 2023, arXiv:2310.06181

Modeling VHE emission

Model for GeV-TeV emissions

In general, γ rays: current sheet

- GeV emission Synchro-Curvature
- TeV emission Inverse Compton (IC)

IC required target photon field

 hypothesis: accelerated primaries interact with soft photons produced by secondary electron and positron pairs

- ex. Petri24: radio emission polar caps, X-rays separatrix, γ rays current sheet

Insight from analytic estimates?

Parameter space exploration for Vela-like properties

Timescales

- dynamical: link to typical size
- acceleration: ex. $t_{\rm acc} \simeq \gamma_e m_e c^2 / c e \eta B$
- synchro-curvature: synchrotron radiation (SR) and curvature radiation (CR)
 - local magnetic field, pitch angle & effective curvature
- inverse Compton (IC): requires description photon background
 - IC vs SR or CR: potentially cooling before IC, lower cutoff

Maximum energies

Example: see H.E.S.S. Collaboration 2023, arXiv:2310.06181

Maximum Lorentz factor -> maximum radiated energy & maximum IC energy

- parameters of Vela pulsar
- for dominant synchrotron radiation (left) or curvature radiation (right)

Limitations: parameter space constrained, SR dominated requires suppression CR

Maximum energies

Radiated power and spectra

<u>Inputs</u>: observed luminosities & energy loss rates for SR or CR

<u>Assumptions</u>: photon field, typical magnetosphere properties, ex. Goldreich Julian particle densities and pair multiplicies

Estimates: emitting volumes, number particles contributing to HE & VHE emissions

Spectral modeling

Ex. semi-analytic approach for PDE resolution

- evolution of particle distribution with losses, parametrized photon background
- particle distribution cooling (no reacceleration), typical timescale $t_{\rm dyn} \sim R_{\rm LC}/c$

Synchro-curvature

Radiated power and spectra

Inputs: observed luminosities & energy loss rates for SR or CR

<u>Assumptions</u>: photon field, typical magnetosphere properties, ex. Goldreich Julian particle densities and pair multiplicies

Estimates: emitting volumes, number particles contributing to HE & VHE emissions

Spectral modeling

Ex. semi-analytic approach for PDE resolution

- evolution of particle distribution with losses, parametrized photon background
- particle distribution cooling (no reacceleration), typical timescale $t_{\rm dyn} \sim R_{\rm LC}/c$

Particle trajectories

Emission along particle trajectory. *Analytic models?*

Propagation regions

- HE particles not trapped in plasmoids
- lower energy pairs in plasmoids, radiating
- evolution of B, E_{\parallel} during propagation

Particle properties

- evolution of effective curvature & pitch angle

Semi-analytic models / simulations

- lorentz factor & pitch angle evolution
- radiation reaction limit, ex. Mestel+85, Petri16 $q(E + v \times B) = \mathscr{P} v/c^2$ (SI)
- momentum evolution along propagation, ex. Hirotani&Shibata99, Vigano+15

Pair production regions

0.0

0.5

1.0

1.5

 $r/R_{
m LC}$

2.0

2.5

Photon background

Impact on inverse Compton, pair production, photo-hadronic processes

Observations in optical and lower energies limited

- determine from VHE observations, ex. H.E.S.S. Collaboration 2023, arXiv:2310.06181
- information from lightcurves, time coincidence, extended regions emitting
- constraints from pair production models, ex. Harding et al. 2021

Pair production, γB , $\gamma \gamma$

- analytic & (simple) numerical approaches: map potential pair production regions

What about protons?

Protons can be:

- injected from the NS surface
- accelerated in gaps / current sheet
- ex. PIC simulations Guepin et al. 2020, arXiv:1910.11387

Contributions to the MWL spectrum, through radiation and interactions?

What about protons?

Protons can be:

- injected from the NS surface
- accelerated in gaps / current sheet
- ex. PIC simulations Guepin et al. 2020, arXiv:1910.11387

Contributions to the MWL spectrum, through radiation and interactions? Most certainly weak

What about protons?

Protons can be:

- injected from the NS surface
- accelerated in gaps / current sheet
- ex. PIC simulations Guepin et al. 2020, arXiv:1910.11387

Contributions to the MWL spectrum, through radiation and interactions? Most certainly weak

VHE emissions from pulsars - Insight from analytic approaches 16

<u>Morphology and geometry</u>: early magnetosphere models, numerical simulations

Lightcurves: inclination pulsar-observer, emission regions, particle trajectories

MWL spectrum: particle distributions, acceleration, radiation and interactions

- analysis typical timescales and maximum energies: parameter space exploration
- total energy radiated, uncertainties & degeneracies
- spectral modeling with simple "one zone" models
 - parameter space constrained
 - SR dominated requires suppression CR
 - SC cooling can impact GeV peak and IC cutoff
- further constraints from "multi-zone" models
 - acceleration zones, suppression of SC
 - particle propagation & photon fields predictions

<u>Coupling with photohadronic studies</u>: protons, nuclei, HE neutrinos?

- no impact on MWL spectum expected for Vela parameters
- perspectives: other pulsars with higher optical photons background