

Testing for a "Crab-like" Emission Tail above 10 GeV from the Vela Pulsar and PSR B1706-44 using combined H.E.S.S. & Fermi-LAT data

> Maxime Regeard & Arache Djannati-Ataï, APC On behalf of the H.E.S.S. collaboration

Context: Pulsars in Gamma-ray

HE pulsars:

• We detect the tail of the GeV emission as seen in Fermi-LAT data.

VHE pulsars:

• It's another story ...

Crab pulsar: Veritas 2011

Crab pulsar: MAGIC 2016

Figure 4 from [Ansoldi et al. 2016]

Vela pulsar: H.E.S.S. 2018

Detection of pulsation from the Vela pulsar by H.E.S.S. up to ~100 GeV

Propose to use a likelihood ration between a power-law and a log-parabola to probe curvature

3.3 σ in favour of a LPB in Fermi-LAT data

Not enough statistics to fit a log-parabola but ...

... 3 σ in index deviation between two set of cuts in H.E.S.S. Mono data

Figure 5 from [Abdalla, H. et al., 2018]

PSR B1706-44: H.E.S.S. 2019

Detection of PSR B1706-44 in the HE range by H.E.S.S.

Not enough stats to fit a logparabola.

Power-law index harder than for Vela.

Vela pulsar: H.E.S.S. 2023

Figure 3 from [Aharonian, F., et al. 2023]

Two different pulsars at TeV

Curvature or Power-law ?

Question:

- Is the GeV tail of pulsars a power-law or not ?
- Is there curvature in the GeV tail of pulsars ?

Important to understand pulsars' emission mecanisms.

Two main radiation scenarii:

- Synchrotron Radiation (SR)
- (Synchro-) Curvature Radiation (CR)

Usually these two radiation mecanisms fit properly Fermi-LAT data

If there is curvature \rightarrow Reinforce such models

Crab is an exception:

- More complex models are needed
- What are the consequences on potential Inverse Compton emission

Vela Mono paper ¹:

- 3.3 σ in favour of a log-parabola in Fermi-LAT data
- Not enough statistics to fit a log-parabola but ...
- ... 3 σ in index deviation between two set of cuts in H.E.S.S. Mono data

PSR B1706-44²:

- Not enough stats to fit a log-parabola.
- Power-law index harder than for Vela.

Why we think that we can unveil curvature now?

- Fermi-LAT data grow with time \rightarrow More statistics now !
- Gammapy ³ \rightarrow Joint analysis between Fermi-LAT and H.E.S.S.
- 1: [H.E.S.S. Collaboration, Abdalla, H., Aharonian, F., et al. 2018, AA, 620, A66]
- 2: [Spir-Jacob, M., Djannati-Ataï, A., Mohrmann, L., et al. 2019]
- 3: [Donath, A., Terrier, R., Remy, Q., et al. 2023, Astronomy & Astrophysics, 678, A157]

Analysis method

What we want to do?

• Determine wether there is curvature or not in the tail of the GeV bump of pulsars

How to do it ?

- Perform a likelihood ratio between a power-law and a log-parabola above different energy thresholds through a joint analysis of Fermi-LAT and H.E.S.S. Mono data
- First energy threshold is defined as 10 GeV \rightarrow begining of the Crab power-law tail
- Increase this energy threshold as far as the statistics allow it \rightarrow 15 GeV, 20 GeV, etc.

However

- We are not trying to prove that a log-parabola better described the data in this energy range.
- We are using this model because it is the simplest model to describe curvature.
- Power-law and Log-parabola are nested models \rightarrow assessment of statistics is straight forward.

Vela: Datasets

H.E.S.S.

- Vela Mono paper ¹ dataset
- 40.6 h of livetime

Fermi-LAT

- 3PC ⁴ FITS file
- 12 years of data
- 1: [H.E.S.S. Collaboration, Abdalla, H., Aharonian, F., et al. 2018, AA, 620, A66]
- 4: [Smith, D. A., Abdollahi, S., Ajello, M., et al. 2023, The Astrophysical Journal, 958, 191]

Vela: Phasograms

Maxime Regeard

26 November 2024

Vela: H.E.S.S. Spectrum

Maxime Regeard

Vela: Fermi-LAT

Vela Fermi-LAT > 1GeV Gammapy

Power-law with exponential cutoff:

$$\phi(E) = \phi_0 \cdot \left(\frac{E}{E_0}\right)^{-\Gamma} \exp(-(\lambda E)^{\alpha})$$

$$\phi(1.8 \ GeV) = 6.2 \times 10^{-10} \pm 0.8 \ MeV^{-1}s^{-1}cm^{-2}$$

$$\Gamma = 1.3 \pm 0.04$$

$$\lambda = 1.2 \times 10^{-3} \pm 0.2 \ MeV^{-1}$$

$$\alpha = 5.2 \times 10^{-1} \pm 0.2$$

Maxime Regeard

Vela: Fermi-LAT – H.E.S.S. Joint-fit

Vela Joint Fit > 1GeV

Power-law with exponential cutoff:

$$\phi(E) = \phi_0 \cdot \left(\frac{E}{E_0}\right)^{-\Gamma} \exp(-(\lambda E)^{\alpha})$$

$$\phi(1.8 \ GeV) = 5.2 \times 10^{-10} \pm 0.6 \ MeV^{-1}s^{-1}cm^{-2}$$

$$\Gamma = 1.4 \pm 0.04$$

$$\lambda = 9.2 \times 10^{-4} \pm 1.5 \ MeV^{-1}$$

$$\alpha = 5.6 \times 10^{-1} \pm 0.2$$

Maxime Regeard

Vela: Fermi-LAT – H.E.S.S. Joint-fit

Vela Joint Fit > 1GeV

Power-law with exponential cutoff:

$$\phi(E) = \phi_0 \cdot \left(\frac{E}{E_0}\right)^{-\Gamma} \exp(-(\lambda E)^{\alpha})$$

$$\phi(1.8 \ GeV) = 5.2 \times 10^{-10} \pm 0.6 \ MeV^{-1}s^{-1}cm^{-2}$$

$$\Gamma = 1.4 \pm 0.04$$

$$\lambda = 9.2 \times 10^{-4} \pm 1.5 \ MeV^{-1}$$

$$\alpha = 5.6 \times 10^{-1} \pm 0.2$$

Fermi-LAT only:

 $\begin{aligned} \phi(1.8 \ GeV) \\ &= 6.2 \times 10^{-10} \pm 0.8 \ MeV^{-1}s^{-1}cm^{-2} \\ \Gamma &= 1.3 \ \pm 0.04 \\ \lambda &= 1.2 \times 10^{-3} \pm 0.2 \ MeV^{-1} \\ \alpha &= 5.2 \times 10^{-1} \ \pm 0.2 \end{aligned}$

Maxime Regeard

Energy [GeV]

Vela Fermi-LAT - H.E.S.S. joint-fit > 10 GeV

Energy [GeV]

Vela Fermi-LAT - H.E.S.S. joint-fit > 15 GeV

Energy [GeV]

Dataset	Significance	PowerLaw	LogParabola
H.E.S.S.	Х	$\alpha = 4.1 \pm 0.2$	Х
Fermi-LAT (>10 GeV)	5.6σ	$\alpha = 4.0 \pm 0.07$	$lpha = 4.1 \pm 0.1 \ eta = 1.0 \pm 0.2$
Fermi-LAT (>15 GeV)	3σ	$\alpha = 4.6 \pm 0.2$	$\alpha = 3.6 \pm 0.4$ $\beta = 1.6 \pm 0.7$
Joint (>10 GeV)	7.3σ	$\alpha = 4.1 \pm 0.05$	$lpha = 4.2 \pm 0.08$ $eta = 1.1 \pm 0.2$
Joint (>15 GeV)	5.7σ	$\alpha = 4.4 \pm 0.1$	$\alpha = 3.7 \pm 0.3$ $\beta = 1.6 \pm 0.5$
Joint (>20 GeV)	3.1σ	$\alpha = 4.8 \pm 0.2$	$lpha = 5.0 \pm 0.4 \ eta = 1.4 \pm 0.6$

ECPL vs SBPL: Vela

ECPL vs SBPL :

- SBPL fit gives an *E*_{break} of 38 GeV but not statistically favoured
- Further tests favour ECPL, e.g.: Fixing E_{break} to 10 GeV $\Delta TS(AIC) = 8.2,$ $\Delta TS(BIC) = 8.2$

Vela: Conclusion

We measure the presence of curvature at the 5 σ level above 15 GeV and at the 3 σ level above 20 GeV.

This excludes the onset of a power-law at these energies.

Vela emission mechanism is clearly different from the Crab pulsar:

- This is in line with the scenario depicted in the TeV Vela paper ([Aharonian, F., et al. 2023])
- Confirms the preliminary HE-VHE pulsar classification proposed here: Crab-like vs Vela-like

PSR B1706-44: Datasets

H.E.S.S.

- PSR B1706-44 ICRC proceeding ²
- 21.7 h of livetime

Fermi-LAT

- 3PC ⁴ FITS file
- 10.9 years of data
- 2: [Spir-Jacob, M., Djannati-Ataï, A., Mohrmann, L., et al. 2019]
- 4: [Smith, D. A., Abdollahi, S., Ajello, M., et al. 2023, The Astrophysical Journal, 958, 191]

PSR B1706-44: Phasograms

Maxime Regeard

26 November 2024

PSR B1706-44: H.E.S.S. Spectrum

25

PSR B1706-44: Fermi-LAT

PSR B1706-44 Fermi-LAT > 1GeV Gammapy

Power-law with exponential cutoff:

$$\phi(E) = \phi_0 \cdot \left(\frac{E}{E_0}\right)^{-\Gamma} \exp(-(\lambda E)^{\alpha})$$

$$\phi(1.8 \ GeV) = 1.8 \times 10^{-10} \pm 0.3 \ MeV^{-1}s^{-1}cm^{-2}$$

$$\Gamma = 1.5 \pm 0.06$$

$$\lambda = 5.3 \times 10^{-4} \pm 1.4 \ MeV^{-1}$$

$$\alpha = 6.4 \times 10^{-1} \pm 0.4$$

Maxime Regeard

PSR B1706-44: Fermi-LAT – H.E.S.S. Joint-fit

PSR B1706 Joint Fit > 1GeV

Power-law with exponential cutoff:

$$\phi(E) = \phi_0 \cdot \left(\frac{E}{E_0}\right)^{-\Gamma} \exp(-(\lambda E)^{\alpha})$$

$$\begin{split} \phi(1.8 \; GeV) &= 1.9 \times 10^{-10} \pm 0.3 \; MeV^{-1}s^{-1}cm^{-2} \\ \Gamma &= 1.4 \; \pm 0.07 \\ \lambda &= 6.0 \times 10^{-4} \pm 1.6 \; MeV^{-1} \\ \alpha &= 6.2 \times 10^{-1} \pm 0.4 \end{split}$$

Maxime Regeard

PSR B1706-44: Fermi-LAT – H.E.S.S. Joint-fit

PSR B1706 Joint Fit > 1GeV

Power-law with exponential cutoff:

$$\phi(E) = \phi_0 \cdot \left(\frac{E}{E_0}\right)^{-\Gamma} \exp(-(\lambda E)^{\alpha})$$

$$\begin{split} \phi(1.8 \; GeV) &= 1.9 \times 10^{-10} \pm 0.3 \; MeV^{-1}s^{-1}cm^{-2} \\ \Gamma &= 1.4 \; \pm 0.07 \\ \lambda &= 6.0 \times 10^{-4} \pm 1.6 \; MeV^{-1} \\ \alpha &= 6.2 \times 10^{-1} \pm 0.4 \end{split}$$

Fermi-LAT only: $\phi(1.8 \ GeV) = 1.8 \times 10^{-10} \pm 0.3 \ MeV^{-1}s^{-1}cm^{-2}$ $\Gamma = 1.5 \pm 0.06$ $\lambda = 5.3 \times 10^{-4} \pm 1.4 \ MeV^{-1}$ $\alpha = 6.4 \times 10^{-1} \pm 0.4$

Maxime Regeard

Dataset	Significativity	PowerLaw	LogParabola
H.E.S.S.	Х	$\alpha = 3.3 \pm 0.3$	Х
Fermi-LAT (>10 GeV)	3.9 <i>σ</i>	$\alpha = 4.3 \pm 0.1$	$\alpha = 4.6 \pm 0.04$ $\beta = 1.4 \pm 0.3$
Fermi-LAT (>15 GeV)	Х	$\alpha = 5.1 \pm 0.4$	Х
Joint (>10 GeV)	3.8σ	$\alpha = 4.2 \pm 0.1$	$lpha = 4.5 \pm 0.6$ $eta = 1.3 \pm 0.1$
Joint (>15 GeV)	1.8σ	$\alpha = 4.8 \pm 0.3$	$lpha = 4.3 \pm 0.6$ $eta = 1.3 \pm 1.1$
Joint (>20 GeV)	0.8σ	$\alpha = 5.6 \pm 0.6$	$\alpha = 5.4 \pm 0.9$ $\beta = 1 \pm 1.5$

ECPL vs SBPL: PSR B1706-44

- SBPL fit gives an E_{break} of 22.6
 GeV but not statistically favoured
- Further tests favour ECPL, e.g.: Fixing E_{break} to 10 GeV $\Delta TS(AIC) = 7.7,$ $\Delta TS(BIC) = 7.7$

We measure the presence of curvature at the 3 σ level above 10 GeV.

This exclude the onset of a power-law at this energy.

Such detection favours a Vela-like emission scenario.

We cannot exclude the onset of a power-law at energies of 15-20 GeV.

Crab: Validation

Maxime Regeard

26 November 2024

Crab: Fermi-LAT

Crab P1 Fermi-LAT > 1GeV Gammapy

Power-law with exponential cutoff:

$$\phi(E) = \phi_0 \cdot \left(\frac{E}{E_0}\right)^{-\Gamma} \exp(-(\lambda E)^{\alpha})$$

$$\begin{aligned} \phi(1.8 \ GeV) \\ &= 9.7 \times 10^{-11} \pm 1.8 \ MeV^{-1}s^{-1}cm^{-2} \\ \Gamma &= 1.7 \ \pm 0.07 \\ \lambda &= 2.4 \times 10^{-3} \pm 0.7 \ MeV^{-1} \\ \alpha &= 4.4 \times 10^{-1} \ \pm 0.3 \end{aligned}$$

Maxime Regeard

Crab: Curvature study

Summary and conclusions:

- Qualifying the behaviour of the high energy end of pulsar spectra in the tens of GeV range is of prime importance for constraining emission models
 - As seen in the case of the Crab pulsar the extension of its emission challenged dramatically the standard CR picture
- Methods : we elaborated on a quantitative method ([Abdalla, H. et al., 2018]) to test for curvature for two pulsars detected with HESS : Vela and B1706-44
- The method was tested and validated on the Crab with Fermi-LAT data
- We are able to detect a curvature and exclude the onset of a power-law, up to 20 GeV for Vela and up to 10 GeV for B1706-44
- Testing for a SBPL against an ECPL model confirms the above
- The case for the other HE pulsar, Geminga, was discussed in the talk by Giulia Brunelli
- CTAO with its low threshold and high sensitivity should provide valuable data in this matter

Vela: Fermi-LAT

Maxime Regeard

PSR B1706-44: Fermi-LAT

PSR B1706-44 Fermi-LAT > 1GeV Fermipy vs Gammapy

Maxime Regeard

26 November 2024

Reading Fermi-LAT energy dispersion in Gammapy

To properly fit Fermi-LAT data we need to take into account the energy dispersion matrix

In Gammapy , the best practice is to have a true energy axis with more bins and over a wider energy range than the reco energy axis.

 \rightarrow Not straight forward with Fermitools/fermipy

Solution:

- Oversample IRFs: between 100 MeV and 10 TeV (to do an analysis between 1 GeV and 1 TeV)
- Resample the reco energy axis into the analysis one.

Maxime Regeard

Maxime Regeard

Vela: Phasograms

PSR B1706-44: Phasograms

Maxime Regeard

Vela: H.E.S.S. Spectrum

PSR B1706-44: H.E.S.S. Spectrum

Maxime Regeard

Vela: Fermi-LAT

Maxime Regeard

PSR B1706-44: Fermi-LAT

Maxime Regeard

Crab: Fermi-LAT

Vela Fermi-LAT > 10 GeV

Vela Fermi-LAT > 10 GeV

Vela Fermi-LAT > 15 GeV

Vela Fermi-LAT > 15 GeV

Maxime Regeard

Vela Fermi-LAT - H.E.S.S. joint-fit > 10 GeV

Vela Fermi-LAT - H.E.S.S. joint-fit > 10 GeV

Maxime Regeard

Vela Fermi-LAT - H.E.S.S. joint-fit > 15 GeV

Vela Fermi-LAT - H.E.S.S. joint-fit > 15 GeV

 10^{-9} 10^{-9} ECPL joint-fit > 1 GeV Vela Mono Paper PL joint-fit > 20 GeV LPB joint-fit > 20 GeV Fermi-LAT Ð Fermi-LAT Ð 10-10 10-10 ιŦι Ð HESS Mono HESS Mono e2dnde [ergs⁻¹cm⁻²] e2dnde [erg s⁻¹cm⁻²] 10-11 10-11 10⁻¹² ר 10-12 10-13 -10-13 10^{-14} 10^{-14} 10² 10² Energy [GeV] Energy [GeV]

Vela Fermi-LAT - H.E.S.S. joint-fit > 20 GeV

Maxime Regeard

Maxime Regeard

PSR B1706-44 Fermi-LAT - H.E.S.S. joint-fit > 10 GeV

PSR B1706-44 Fermi-LAT - H.E.S.S. joint-fit > 10 GeV

Maxime Regeard

PSR B1706-44 Fermi-LAT - H.E.S.S. joint-fit > 15 GeV

Maxime Regeard

PSR B1706-44 Fermi-LAT - H.E.S.S. joint-fit > 20 GeV

Maxime Regeard