(Very-) High Energy End of Pulsar Spectra What is at stake? "Phenomenology & Future Prospects" (Isolated pulsars)

Arache Djannati-Ataï APC Laboratory, Paris

Third HONEST Workshop Online, Novembre 2024

Origin of HE/VHE emission?

- Two main paradigms:

 - Acceleration by *E*_{||} in gaps ++
 Acceleration through magnetic reconnection in the current sheet (CS)
- Two main scenarios:
 - I- Curvature Radiation CR/iC in
 - Outer Gaps
 - Separatrix-CS
 - II- SR/IC in the CS
 - near the LC
 - Boosted emission $\sim >> R_{\rm LC}$
- UV-O-NIR Targets for IC scattering:
 - SR by secondary pairs
 - Along OG or between NS 0.5 $R_{\rm LC}$
 - Around CS (isotropic)

The Original cartoon!

© Marion Spir-Jacob PhD, 2019, APC

Drawn first on the white board (room 596A, APC) by Marion Spir-Jacob during a discussion with ADA (~Nov 2018)

The 20 TeV emitter pulsar : Vela

Nature Astronomy (2023), Vol 7, p. 1341-1350

Phase & width compatible with <100 GeV pulses

Very hard spectrumP2 : $\Gamma = -1.4 \pm 0.3$ New TeV component !

The 20 TeV emitter pulsar : Vela

Angular distance (deg)

The 20 TeV emitter pulsar : Vela

Nature Astronomy (2023), Vol 7, p. 1341-1350

Phase & width compatible with <100 GeV pulses

Very hard spectrumP2 : $\Gamma = -1.4 \pm 0.3$ New TeV component !

Parameter space ! Maximum Lorentz Factor

- Two main paradigmes:
 - Acceleration by $E_{||}$ in gaps
 - Acceleration through magnetic reconnection in the current sheet (CS)
- TeV phase aligned with GeV pulsations:
 - Same population & similar spatial regions
 - Not necessarily identical: caustics
- Two main scenarios:

I- Curvature Radiation CR/IC in Outer Gaps/Separatrix-CS

 $\begin{array}{l} \gamma_{\rm CR}^{\rm max} \simeq 4 \times 10^7 \, \xi^{1/2} \eta_{-1}^{1/4} \\ E_{\rm CR}^{\rm max} \simeq 5 \, {\rm GeV} \, \xi^{1/2} \eta_{-1}^{3/4} \end{array} \begin{array}{l} \eta_{-1} = \eta/0.1 \\ \rho_{\rm c} = \xi \, R_{\rm LC} \end{array}$

II- SR/IC in the CS

 $\gamma_{
m SR}^{
m max} \simeq 1.3 imes 10^6 (B_{\perp}/B_{
m LC})^{-1/2} (E_{
m SR}^{
m max}/1.5~{
m GeV})^{1/2}$

- $\gamma_{
 m IC}^{
 m max}\gtrsim 7 imes 10^7$ Fit to the TeV data:
- CR/IC scenario:
 - Constraint by GeV data:
 - $\eta \ll 0.1$ and $\hat{\xi} \gg 1$ $(\eta, \hat{\xi})$ Different combinations of
 - Implies a dissipation region beyond the LC where $\rho_{\rm c} \gg R_{\rm LC}$
 - Can provide much higher energies than in traditional magnetospheric models
- SR/IC scenario:
 - Constraint by GeV data and B:

 $\gamma_{
m SR}^{
m max} \simeq 1.3 imes 10^6 (B_{\perp}/B_{
m LC})^{-1/2} \, (E_{
m SR}^{
m max}/1.5 \, {
m GeV})^{1/2}$

- Insufficient maximum energy
- Particles well beyond SR cut-off
- 2-step acceleration/SR-cooling process
 - Larmor radii > largest plasmoids
 - Re-acceleration after SR-cooling : Caustics
- Doppler-boosted (bulk motion):

 $\Gamma_{\rm w}\gtrsim 5$ $\simeq 5R_{\rm LC}$

9

- Fit to the TeV data: $\gamma_{\rm IC}^{\rm max} \gtrsim 7 \times 10^7$
- CR/IC scenario:
 - Constraint by GeV data:
 - Different combinations of $(\eta, \hat{\xi})$ $\eta \ll 0.1$ and $\hat{\xi} \gg$
 - Implies a dissipation region beyond the LC where $\rho_{\rm c} \gg R_{\rm LC}$
 - Can provide much higher energies than in traditional magnetospheric models
- SR/IC scenario:
 - Constraint by GeV data and B:

 $\gamma_{
m SR}^{
m max} \simeq 1.3 imes 10^6 (B_\perp/B_{
m LC})^{-1/2} \, (E_{
m SR}^{
m max}/1.5 \, {
m GeV})^{1/2}$

- Insufficient maximum energy
- Particles well beyond SR cut-off
- 2-step acceleration/SR-cooling process
 - Larmor radii > largest plasmoids
 - Re-acceleration after SR-cooling : Caustics
- Doppler-boosted (bulk motion):

 $\left\{ \begin{array}{l} \Gamma_{\rm w}\gtrsim 5\\ \simeq 5R_{\rm LC} \end{array} \right.$

•	GeV Component	10
•	Interpreted as CR	
•	Same distribution of particles	
	$rac{d^2N}{d\gamma dt} \propto (\gamma/\gamma_0)^{-p} \exp\left[-(\gamma/\gamma^{ m max})^eta ight]$	10
•	The GeV peak energy (or variations of it) is not the best measure of the maximum	10-
•	The IC component (in the KN regime) is unambiguous !	

- GeV Component \bullet
- Interpreted as CR
- Same distribution of particles

$$rac{d^2 N}{d\gamma dt} \propto (\gamma/\gamma_0)^{-p} \exp\left[-(\gamma/\gamma^{\max})^{\beta}
ight]$$

- The GeV peak energy (or variations of it) is not the \bullet best measure of the maximum
- The IC component (in the KN regime) is unambiguous !
- GeV E_peak should be derived based on a finely \bullet phase-resolved spectrum
- However even for Vela with huge statistics one still ulletgets a sub-exponential cutoff even with very fine binning

- $\gamma_{
 m IC}^{
 m max}\gtrsim 7 imes 10^7$ • Fit to the TeV data:
- CR/IC scenario:
 - Constraint by GeV data:
 - Different combinations of $(\eta, \hat{\xi})$ $\eta \ll 0.1$ and $\hat{\xi} \gg 1$
 - Implies a dissipation region beyond the LC where $\rho_{\rm c} \gg R_{\rm LC}$
 - Can provide much higher energies than in traditional magnetospheric models
- SR/IC scenario:
 - Constraint by GeV data and B:

```
\gamma_{
m SR}^{
m max} \simeq 1.3 	imes 10^6 (B_{\perp}/B_{
m LC})^{-1/2} (E_{
m SR}^{
m max}/1.5 \, {
m GeV})^{1/2}
```

- Insufficient maximum energy
- Particles well beyond SR cut-off
- 2-step acceleration/SR-cooling process
 - Larmor radii > largest plasmoids
 - Re-acceleration after SR-cooling : Caustics
- Doppler-boosted (bulk motion):

 $\Gamma_{
m w}\gtrsim 5$

 $\simeq 5R_{\rm LC}$

- Fit to the TeV data: $\gamma_{\rm IC}^{\rm max} \gtrsim 7 \times 10^7$
- CR/IC scenario:
 - Constraint by GeV data:
 - Different combinations of $(\eta, \hat{\xi})$ $\eta \ll 0.1$ and $\hat{\xi} \gg 1$
 - Implies a dissipation region beyond the LC where $\rho_{\rm c} \gg R_{\rm LC}$
 - Can provide much higher energies than in traditional magnetospheric models
- SR/IC scenario:
 - Constraint by GeV data and B:

```
\gamma_{
m SR}^{
m max}\simeq 1.3	imes 10^6 (B_{\perp}/B_{
m LC})^{-1/2}\,(E_{
m SR}^{
m max}/1.5\,{
m GeV})^{1/2}
```

- Insufficient maximum energy
- Particles well beyond SR cut-off
- 2-step acceleration/SR-cooling process
 - Larmor radii > largest plasmoids
 - Re-acceleration after SR-cooling : Caustics
- Doppler-boosted (bulk motion):

$$\begin{cases} \Gamma_{\rm w} \gtrsim 5 \\ \simeq 5 R_{\rm LC} \end{cases}$$

Observer

[B. Cerutti et al. 2016]

Boosted SR/IC

$$\begin{split} \hat{r} &= r/R_{\rm LC}, \, B'(\hat{r}) = B(\hat{r})/\Gamma_{\rm w} \\ E_{\rm SR}^{\rm max'} &= E_{\rm SR}^{\rm max}/2\,\Gamma_{\rm w}, \\ B(\hat{r}) \sim B_{\rm LC}/\hat{r}^2 \text{ in the near wind region} \\ \begin{cases} \gamma_{\rm SR}^{\rm max'} &\simeq 10^6 (\frac{E_{\rm SR}^{\rm max}}{1.5\,{\rm GeV}})^{1/2}\,\hat{r} \\ \gamma_{\rm IC}^{\rm max} &= 2 \times \Gamma_{\rm w}\,\gamma_{\rm SR}^{\rm max'} \end{cases} \\ \Gamma_{\rm w} &\simeq 22\,\left(\frac{E_{\rm SR}^{\rm max}}{1.5\,{\rm GeV}}\right)^{-1/2}\,\left(\frac{E_{\rm VHE}}{20\,{\rm TeV}}\right)\,\hat{r}^{-1} \\ \begin{cases} \Gamma_{\rm w} &= (1+\hat{r}^2)^{1/2} \\ \Gamma_{\rm w} &\simeq \hat{r}_{\rm e} \simeq 5. \end{cases} \end{split}$$

[B. Cerutti et al. 20xx]

Parameter space ! IC Target Photon Density

$E^2 dN/dE$ (erg cm⁻²s⁻¹)

- IC targets :
 - Radio
 - Non thermal SYN (IR-O-UV, X,..),
 - Thermal X-rays (NS)
 - Other
- VHE index & luminosity is function of target ϵ min:
 - e.g.: NIR-O targets for Vela

- IC targets :
 - Radio
 - Non thermal SYN (IR-O-UV, X,..),
 - Thermal X-rays (NS)
 - Other
- VHE index & luminosity is function of target ϵ min:
 - e.g.: NIR-O targets -> UV -X targets
 - Thomson to KN regime

$E^2 dN/dE$ (erg cm⁻²s⁻¹)

- IC targets :
 - Radio
 - Non thermal SYN (IR-O-UV, X,..),
 - Thermal X-rays (NS)
 - Other
- VHE index & luminosity is function of target &min:
 - e.g.: NIR-O targets for Vela

- IC targets :
 - Radio
 - Non thermal SYN (IR-O-UV, X,..),
 - Thermal X-rays (NS)
 - Other
- VHE index & luminosity is function of target ϵ min:
 - e.g.: NIR-O targets -> UV -X targets
 - Thomson to KN regime
- Degeneracies :
 - Target energy range (min)
 - IC Interaction volume
 - Assuming same population !
 - Underlying particle distribution

CR/IC & SR/IC

$rac{d^2 N}{d\gamma dt} \propto (\gamma/\gamma_0)^{-p} \exp\left[-(\gamma/\gamma^{ m max})^eta ight]$

electron $\sim \sim \rightarrow$ O-NIR photon

GeV gamma ray

MM TeV gamma ray

 $ho_L\simeq 4 imes 10^{-3}\,R_{
m LC}\,(\gamma^{
m max}/7 imes 10^7)$ $p\,\simeq\,1,\,\beta\,\simeq\,1.8$

 10^{-9} 10^{-10} CD 10-11 -1 [ergs⁻ 10^{-12} e2dnde 10⁻¹³ 10^{-14} 10^{-15} 10^{-3}

- The discovery of 20 TeV pulsations from Vela opened a new observation window (The discovery of the TeV luminous PSR J1509-5850 does even more so)
- The TeV pulsar family has very few members but already many challenges to emission models
- We still don't know the E_max : both CR/IC and SR/IC can work
- If >100 TeV γ rays: boosted emission in the CS
- Many other questions: LC evolution with E
- Can TeV IC reveal new features in the LC?
- <100 GeV range is also very critical: Crab-like tails or curved Vela-like spectra? [See Maxime's talk]
- Multi-Wavelength modelling including radio and X-rays ...
- New sensitive instruments : TeV pulsar population ?! Statistical studies : L_{TeV} dependence on inclination? etc

- The discovery of 20 TeV pulsations from Vela opened a new observation window (The discovery of the TeV luminous PSR J1509-5850 does even more so)
- The TeV pulsar family has very few members but already many challenges to emission models
- We still don't know the E_max : both CR/IC and SR/IC can work
- If >100 TeV γ rays: boosted emission in the CS
- Many other questions: LC evolution with E,
- Can TeV IC reveal new features in the LC?
- <100 GeV range is also very critical: Crab-like tails or curved Vela-like spectra? [See Maxime's talk]
- Multi-Wavelength modelling including radio and X-rays ...
- New sensitive instruments : TeV pulsar population ?! Statistical studies : L_{TeV} dependence on inclination? etc

CTAO

Fermi-LAT > 1 GeV sky

Radio : ~3500 rotation powered, ~681 MSPs (354 in GCs)

- 3PC 384 pulsars listed, 255 with 4FGL-DR3 counterparts
- 136 Young or Middle-aged
- 73 Radio-loud γ-ray (29%)
- 63 Radio-quiet γ-ray (25%)
- 119 γ-ray MSPs : 25 Isolated, 94 Binary (47%)
- 36 Black Widows (27) and Redbacks (9)

- 2 HE pulsars (~100 GeV):
 - Geminga
 - B1706-44
- 3 VHE pulsars (>~100 GeV):
 - Crab ~1.5 TeV
 - Vela ~ 20 TeV
 - J1509-5850 ~10 TeV