Institute of Space Sciences

Quantitative exploration of pulsar light curve similarity

Diego F. Torres

Research done in collaboration with C. R. García

Variety of Pulsar Light curves in the 3PC

W. Counts/bin

W. Counts/bin W. Counts/bin

W. Counts/bin

W. Counts/bin

W. Counts/bin

- About 300 pulsars reported ٠
- 3PC light curves sampled with different levels of precision (from 25 to 800)

Institute of EXCELENCIA MARÍA **Space Sciences** DE MAEZTU

GMRT 0.3 EH

 $\ge 3.0 \text{ GeV} \\ > 10 \text{ GeV}$

10-30 Ge

Smith et al. 2024 (3PC)

Diego F. Torres - 2

Variety of Pulsar Light curves in the 3PC

• Light curves described via global features

Light curves global properties

0.50

0.40

6uc7

Ereque

|0205+6449

Flux ratio between

Flux ratio

two peaks

0.25

0.20

€ 0.15

Preque

Phase

separation

Phase separation

J0205+6449

0.40

0.35

0.30

ç 0.25

a 0.20

د 0.15

J0205+6449

10633+1746

J0218+4232

3PC

Width

Width

Width

Width

Iñiguez-Pascual, Torres, Viganò, MNRAS 2024 (see talk by D. Viganò)

Width

Variety of Pulsar Light curves in the 3PC

Institute of Space Sciences

EXCELENCIA

DE MAEZTU

MARÍA

³PC light curves examples, obtained directly from the catalog

- Very different in flux level and shape, are they?
- Consider the transformation

Counts → (Counts – Background) / (Max-Background)

- And all light curves rotations in phase
- Based on:
 - Phase is arbirtray so rotate them until 'alignment'
 - maps all light curves in a range from 0 to 1 in 'counts'
 - emphasizes morphological differences

García & Torres, in preparation

García & Torres, in preparation

García & Torres, in preparation

García & Torres, in preparation

Consider Euclidean distance from each pulsar to all others, including all rotations, and rank them

- Arising similarities all over the sample
- Significant matching in many cases
- But limited
 - to comparing pulsars having the same number of bins in the light curve, or subjet to a rebinning process to make them so, with the subsequent loss of information
 - Very similar pulsars, not precisely aligned are not singled out as being similar

García & Torres, in preparation

Dynamic time warping: concept

- DTW is an optimization method used to compare time series.
- It works by **dynamically aligning** these time series even with **different sizes**.
- The Euclidean distance (ED) is used once such dynamic alignments (or paths) are established.
- The goal is the optimization of the, so the path with the minimum cost is labelled as *the optimal warping path* and its cost will be *DTW value*.

Dynamic time warping: math

- For this process to be effective we set the next conditions to consider a path:
 - Boundary condition.
 - The initial and final elements of the time series must face each other respectively.
 - Monotonicity condition.
 - No elements of the series that break the temporal order of the series can be matched against each other.
 - Continuity condition.
 - The elements of the series being aligned must be adjacent points, not allowing temporal jumps.
- The resolution for this optimal problem can be seen via:

$$DTW(X,Y) = min_{\pi \in A(X,Y)} \Big(\sum_{(i,j)\in\pi} d(x_i, y_j)^2\Big)^{\frac{1}{2}} \begin{cases} X,Y: \ time \ series \\ A: \ set \ of \ paths \\ \pi: \ path \\ d: \ ED \end{cases}$$

1

García & Torres, in preparation

Dynamic time warping: practice & simple example

• We define the time series as:

 $ts_1 = 3, 1, 2, 2, 1$ $ts_2 = 2, 0, 0, 3, 3, 1, 0.$

• The ED matrix (*E*) between the ts₁ and ts₂:

$$E(d(i,j)^2) = \begin{bmatrix} 1 & 9 & 9 & 0 & 0 & 4 & 9 \\ 1 & 1 & 1 & 4 & 4 & 0 & 1 \\ 0 & 4 & 4 & 1 & 1 & 1 & 4 \\ 0 & 4 & 4 & 1 & 1 & 1 & 4 \\ 1 & 1 & 1 & 4 & 4 & 0 & 1 \end{bmatrix}$$

• The cumulative cost matrix through:

D(i, j) = E(i, j) + min(D(i-1, j), D(i, j-1), D(i-1, j-1)).

Institute of

Space Sciences

- For instance, the value seen in row 2 and column 2, D(2,2)=
 E(2,2) + min(D(1,2), D(2,1), D(1,1)) = 1 + min(10,2,1) = 2.
- The DTW value is the total cost of the blue line, according to the *E*-matrix: $\sqrt{1 + 1 + 1 + 1 + 1 + 0 + 1} = 2.45$

García & Torres, in preparation

Diego F. Torres - 12

EXCELENCIA

DE MAEZTU

MARÍA

Dynamic time warping: example in a figure

The *optimal warping path* is represented by the blue lines where each one defines a distance.

EXCELENCIA

Institute of

A comparison devoid of limitations

- A technique useful to find similarities beyond the simple alignment (which is what the Euclidean distance quantifies)
- It associates morphological structures, despite they do not happen at exactly the same phase
- Can be applied to light curves of any number of bins, without rebinning
- Provides a number, that can be used to quantify similarity

A comparison devoid of limitations

- A technique useful to find similarities beyond the simple alignment (which is what the Euclidean distance quantifies)
- It associates morphological structures, despite they do not happen at exactly the same phase
- Can be applied to light curves of any number of bins, without rebinning
- Provides a number, that can be used to quantify similarity

A comparison devoid of limitations

- Computing the dynamic distance between all pulsars in the sample, and all its rotations, one obtain its distribution: a global view of how
- A well behaving quantitative similarity estimator

•

are

 Permits to define intervals of confidence for the similarity of light curves

similar/dissimilar pulsar light curves

Institute of

Space Sciences

Left panel: Distribution of the DTW_f obtained after comparing the 294 light curves with each other giving rise to 43071 values.

Center panel:Distribution of the inverse of DTW_f (so that the larger DTW are the more similar pairs of light curves). The orange line shows the log-normal distribution, identified as the best fit. The dashed vertical lines denoted with 1σ * (red), 2σ * (blue), and 3σ * (green)

Right panel: Distribution of the natural logarithm of DTW_f^{-1} . The orange line shows the normal distribution. The dashed vertical lines denoted with 1σ (red), 2σ (blue), and 3σ (green) represent the intervals of the distribution according to the known empirical rule.

García & Torres, in preparation

EXCELENCIA MARÍA

DE MAEZTU

We can now cluster the light curves using similarity

J1418-6058

Institute of Space Sciences

EXCELENCIA MARÍA

DE MAEZTU

MSPs are denoted with a star, while pulsars with P>10 ms are shown with a circle.

Black edges indicate similarity is in the range 1-2 sigma, blue 2-3 sigma and green >3 sigma.

García & Torres, in preparation

Conclusions

Pulsar similarity can now be phenomenologically quantified

- Institute of Space Sciences
 - EXCELENCIA MARÍA DE MAEZTU

- Light curves look more different than they really are, in many cases.
- Euclidean and DTW provide quantitative estimators of their morphological similarity
- Euclidean distance is sub-efficient:
 - Cannot deal with light curves of different sizes
 - Cannot assign similarity to light curves that really are if they are slightly displaced (e.g., two peaks with slightly different separation)
- Clustering via light curve similarity can be used to compare with physical and spectral properties of pulsars
- Applications of this methodology go much beyond pulsar light curves
 - TPs, magnetar and GRB light curves, etc.

Institute of Space Sciences

EXCELENCIA MARÍA DE MAEZTU

