
CHEMICAL ABUNDANCES FROM INTEGRATED SPECTRA

STELLAR POPULATION SYNTHESIS

Evolving Stellar Populations



The stellar evolution theory
provide the Tef(m,Z,t) y 
L(m,Z,t) describing the time 
evolution of effective
temperature, Tef , and 
luminosity, L, of a star with
mass, m, and metalicity, Z.

For given values of m and Z, the
functions Tef(t) and L(t)
describe parametrically the
evolutionary track in the H-R 
Diagram (HRD) of such stars..

Stellar Pulation synthesis
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Evolutionary  tracks
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At  t=0 the stars of a SSP are distributted along 

the Zero Age Main Sequence (ZAMS) according 

to a given Initial Mass Function (IMF). acuerdo a 

la IMF.

The Spectral Energy Distribution (SED) of the 
SSP at time t is given by
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The algebra of  Stellar Population Synthesis

Isochrones Initial Mass Function Stellar Spectral Atlas

+ +
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Results

Solar metallicity, 

different ages in Ga

Age 3 Ga ,

different Z in solar units
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Spectral Evolution

Example of evolutionary sequence: Single Stellar 

Population of solar metallicity calculated with stellar 

population synthesis models  by 

Bruzual and Charlot (2003)

Dr Stéphane CharlotDr Gustavo Bruzual
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http://adsabs.harvard.edu/abs/2003MNRAS.344.1000B
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Contribution to the total bolometric luminosity 

by stars in their various evolutionary phases
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Contribution to the total 

luminosity by stars in 

their corresponding 

evolutionary phases, in 

various  photometric 

band passes.

Contributions in the different photometric 

band passes
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For an age of 100 Ma, at 

wavelengths shorter than 4000 Å, 

almost 100% of the  luminosity 

comes from stars in the MS. At 

wavelengths longer than 4000 Å, 

lthe second relevant contribution 

comes from HB stars. 
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Contribution from different stellar phases at 

an age of 100 Ma
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Contribution from different stellar phases at 

an age of 1 Ga



At an age of 10 Ga, at 

wavelengths longer than  

6000 Å , the major 

contribution comes from 

RGB stars.
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Contribution from different stellar phases at 

an age of 10 Ga



Composite Stellar Populations (CSP)

• Composite stellar populations (CSP), according to a given 

Star Formation History (SFH), can be expressed as  a 

combination of a series of instantaneous star formation 

bursts (SFB)  SSP

• La SED de una CSP se puede escribir como:
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l
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Star Formation Rate (SFR)
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SED of a SSP of age t´

Chemical evolution

enters here 



Star Formation Rate (SFR)

• The SFR, (t), is the amount of gas transformed in stars by 

unit time. 

• The function Z(t), is the chemical enrichment law coming 

from chemical evolution modelsl. 

• The IMF is supposed to be time independent. 

• For a given SSP, (t-t’)=.
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• SSP vs composite stellar 

populations.

• The SFR follows an 

exponential functions of 

the kind (t) e-t/
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Spectral evolution

February 2025



Chemical enrichment law predicted by different  

chemical evolution models.

Star Formation Rate
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Composite stellar populations with 
time-dependent metallicity



• Old, low metallicity stellar 
populations look like young stellar 
populations of higher metallcity. 

• Stellar populations with the same 
value of Poblaciones estelares con 
el mismo valor de ageZ3/2 show 
almost the same colours. 

• To break the age-metallicityv
degeneration additional information 
is required. 

Z


a 4, 8, y 13 Ga
Z = 0.4 Z


a 13 Ga

55Element abundances and the chemical evolution of the cosmos      Ángeles I. Díaz

Age-metallicity degeneracy



SSP colours as a function of 
age. 

– Z


(solid line)

– 0.2 Z


(dotted line)

– 2.5 Z


(dashed line)

Z (solid line)

0.2 Z (dotted line)

2.5 Z (dashed line)
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Age-metallicity degeneracy



• Also present in the 

SEDs.

• Note the colour 

similarity, but the 

difference in the 

spectral absorption line 

intensities.
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Age-metallicity degeneracy



Solic circles   globular cluster data
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Braking the age-metallicity degeneracy

The Balmer lines are sentisive 
to age while the metal 
absorption lines are sensitive to 
Z.

The  intensities of these two 
types of lines can be used to 
disentangle  age and metallcity.



Applications of Stellar Population Synthesis

Stellar clusters

➦ CMDs of open and globular clusters.

➦ Integrated magnitudes and colours.

➦ Integrated SEDs.

➦ Surface brightness fluctuations. 

Galaxies

➦ Integrated SEDs.

➦ Star Forfation Histories (SFH).

➦ Metallicity evolution.

➦ Line intensity index interpretation.

➦ Age determination.

➦ Emission line intensities.

➦ Interstellar dust effects.

➦ Analysis of large Galaxy surveys (SDSS, MNGA, etc …)
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Galaxy spectra
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• SPS model fit, in red, to a 
SDSS galaxy spectrum 
(3500-9000 Å), in black.

• Emission lines not included 
in the fit.

• These fits allow to estimate 
the SFH and Z(T) law for a 
given galaxy. 
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Pelló et al. (1999)
z = 4.05, t = 60 Ma

Cowie et al. (2001)
z = 2.60, t = 500 Ma

LBDS 53W091 (Spinrad et al. 1996)
z = 1.55, t = 1.4 Ga

M32 (Bica et al. 1996)
z = 0, t = 3.5 Ga

Average elliptical (Rieke 1997)
z = 0, t = 10 G a

• Plausible evolutionary 

sequences at different 

redshifts between z=4 y z=0

• The youngest galaxies do 

not seem to be at higher 

redshifts.

Estimating Galaxy ages from spectral 

energy distributions (SEDs)



Bruzual & Charlot 2003 Gonzalez Delgado 05
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Model Spectral Energy Distributions 

(SEDs)



Absorption features measured through 
integrated indices

Lick index definition (Worthey et al. 1994, ApJS, 94, 687)
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Breaking the age-metallicity degeneracy

Vazdekis et al. 2010, MNRAS, 404, 1639
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Results for elliptical galaxies

 Based on this kind of 
diagrams, the global 
metallicity of ellipticals, [Z/H],  
is between 0.0 and +0.4 dex

 Main uncertainties come 
from inaccuracies in the 
models and the age-
metallicity degeneracy.

 Some contribution by 
“youngish” populations in 
ellipticals is nowadays 
accepted.

Trager et al. 2005, MNRAS, 362, 2
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