
CHEMICAL EVOLUTION PRINCIPLES

MODEL INGREDIENTS



Chemical evolution goals

The chemical evolution 

studies the origin and the 

distribution of the nuclear 

species (chemical 

elements) in the 

observed stars and  

interstellar medium. 
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Metals and Stellar evolution

Chemical elements are 
produced as  result of 
stellar nucleosynthesis. 
These elementes are: 

ejected to the ISM during or 
at the end of stellar 
evolution,

mixed with the ISM,

incorporated to next stellar 
generations.

As a result, the ISM gets 
progressively chemically 
enriched.
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The chemical evolution cycle
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The chemical evolution cycle
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The ingredients of chemical evolution

Initial conditions.

Stellar birthrate.

Initial mass function.

Star formation rate.

Stellar nucleosynthesis products.

Evolutionary scenario.
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Ingredients: the initial conditions

Inicially, the gas has a 
primordial chemical 
composition: H, D, 3He, 4He y 
7Li (see the previous lecture)

The gas is condensed into 
galaxies that initially consist 
of gas (probably inside dark 
matter haloes) that cools 
down and collapse while 
forming stars. 

Stars form according to a 
given mass distribution: the 
initial mass function (IMF). 
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Ingredients: the stellar birthrate

The “Stellar Birthrate Function” (SBF) is defined as the number 
of stars crated per unit time. 

In principle, this function will depend on stellar mass (m) and time 
(t)  B(m,t)

For analytical work (and in most cases …) this function is 
assumed to separable  B(m,t) = (t) . ϕ(m)

The function (t) is the : “Star Formation Rate” (SFR) and refers 
to the mass which is transformed into stars. 

The function ϕ(m) is the : “Initial Mass Function” (IMF) and 
defines the mass distribution of stars at formation. 
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Ingredients: the initial mass function

The initial mass function gives the number of stars that are formed
in a given mass range.

Usually it is reprsented by a power law of the form:

ϕ(m) = A m -(1+x)

where x is called the IMF slope. 

The first value for x was given by Salpeter (1955) as x = 1.35.

The IMF is normalised to unity in mass: 

ml and mu are the lower and upper limits of the stars than can
form.

mf( m )dm =1
m
l

m
u

ò
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The functional form of the IMF

ϕ(m) = A m -(1+x)
x= 1.35

Salpeter 1955, 121, 161

mf( m )dm =1
m
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m
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ò
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The “Salpeter” IMF
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The Salpeter IMF
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The derivation of the IMF

The IMF is derived from the stellar luminosity function (LF),   

(Mv),  which gives the number of stars per unit volume with 

absolute magnitude within a given range. 

From the LF, the present day mass function (PDFM) with mass 

within a given range. 

Finally, we have to estimate the number of stars which have 

already evolved out of the MS. 
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The Present Day Mass Function (PDMF)

It is the base of the IMF determination. 

It is defined as the number of stars in the Solar Neighbourhood 
(SN) per logarithmic unit of mass interval, per parsec, F (log m)

It is related to the LF by: 

In this expression (Mv) is the number of stars with absolute 
magnitude between MV y MV+dMV ,  per pc3; H is the galactic 
disc length scale; and fMS is the fraction of stars in the  main 
sequence.

F(logm )=F( M
V
)×
dM

V

d logm
× 2H(M

V
)× f

MS
( M

V
)
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The parameters of the PDMF

The PDMF depends on:

1. The LF, (Mv): number of stars  of all types per unit of 

absolute magnitude and pc3 in the galactic disc of the SN. 

2. The mass-luminosity relation for MS stars, |dMv/d(logm)|,

which depends on the stellar evolutionary tracks. 

3. The luminosity fraction coming from MS stars, fms

4. 2H(Mv), which is the result of the integration of the LF 

through the dimension perpendicular to the hgalactic disc, 

assuming this has an expontentially decreasing distribution 

with a scale height H. 
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The local stellar Luminosity Function

Bright stars Faint stars

Kroupa, Tout & Gilmore, 1993, MNRAS, 262, 545
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The characteristics of the LF in the SN

The majority of stars in the SN are intrisically faint. 

Bright stars are rare, but most of the luminosity comes from them. 

Most of the stellar mass comes from the faint stars. 

The mass is didtributted in a roughly uniform way in stars with MV

between 3 y 15.

The mass density in SN stars is ~ 0.039 M


pc -3.

The mean mass-luminosity relation in the SN is 

V ~ 0.67 (M


/ L


)
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The mass-luminosity relation

Kroupa, Tout & Gilmore, 1993, MNRAS, 262, 545
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Luminosity fraction coming from MS stars
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Integration through the disc
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Generally adopted relations
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Uncertainties associated to the derivation of 

the PDMF

The LF gives the number of stars in a given absolute magnitude 
interval. There are bright stars (low Mv) which are not on the MS 
 fms would thus not be well calculated. A solution would be the 
use of spectral types instead of absolute magnitudes. 

Massive stars loose mass and therefore are observed at lower 
luminosities that would initially correspond to them. 

Very young stars might be still embedded within molecular clouds 
and dust. IR observations can help solve this problem. 

Chemical composition variations affect all the used relations. 
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The derivation of the IMF

Stars with MS mean lifetimes, m , longer than the age of the 

Galaxy, t0 , are on the MS at the present time. Their masses are:

m*  1 M


. For them : 

where       is the past average star formation rate.

B(m,t )= f( m )y( t )dt = f( m )
0

t
0

ò y( t )dt = f( m )
0

t
0

ò y
1
× t

0

f( m,m £1M
sun
)=
B(m )

y
1
× t

0

1
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The derivation of the IMF

Stars with mst0 will be on the MS if they formed at a time t0- ms. Their 

masses are:  m*  2 M


. For them:

If ms << t0 , (t) can be considered constant and

where 1 is the present day star formation rate and 1 is about 1 Gyr

B(m,t )= f( m )y( t )dt = f( m )
t
0
-t
ms

t
0

ò y( t )dt
t
0
-t
ms

t
0

ò

f( m,m ³ 2M
sun
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B(m )

y
1
t

1
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The derivation of the IMF

For stars with masses 1 M/M

 2 , we cannot know the IMF 

without knowing the details of the star formation history

To  adjust the two parts of the IMF above, the continuity 

hypothesis is made:

B(m,m £1M
sun
)

B(m,m > 2M
sun
)

=
f( m,m £1M

sun
)

f( m,m> 2M
sun
)

y
1
t
0

y
1
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The continuity condition
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The PDMF for MS stars in the SN

The IMF and the PDMF are 
identical for stars with ms > t0.
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IMF from Kroupa et al. (1993)
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IMF comparison

For stars with mass M > 10 
M


it is valid to use a general 
slope of x= 1.35 (Salpeter). 

Between 1 and 5 M


there is 
a flattening.

Below 0.5 M


it seems totally 
flat (x=0).

The mass at which the curve 
begins t o flatten seems to 
depend on metallicityZ, 
according to some studies of 
globular clusters with different
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Different derived IMFs
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Other functional forms of the IMF

Power law:      (m) = A m - (1+x) 

Several power laws:

Quadratic fit:

Half-Gaussian fit:

m (m) 1  =1.00 m
-0.25

    0.4< m < 1 

m (m) 1   =1.00 m
-1

           1< m < 2 

  m (m) 1   =1.23 m
-1.3

         2< m < 10 

                                     m (m) 1   =12.3 m
-2.3

               m>10 

logf (logm) =1 .53 - 0.96 logm -0.47 (log m)2

f (logm)=C
0
exp -C

1
(logm-C

2
)é

ë
ù
û

2
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Is the IMF “universal” ?
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Is the IMF “universal” ?
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Is the IMF “universal” ?

“The observations are consistent with a single underlying IMF, although the scatter 

at and below the stellar/sub-stellar boundary clearly calls for further study.”

Bastian et al, 2010, ARAA, 48, 339
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IMF slope variation
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IMF time variation

If The IMF has varied with time, 

probably this variation has not been 
very large. It could have been 
reduced at most by a 0.4 factor . 
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Stellar mass ranges of interest for stellar 

evolution and nucleosynthesis

Non stellar objects (brown dwarfs): m*  ML where ML is the 
limiting mass for H burning.

Low mass stars: m*  MHeF

MHeF is the limiting mass for the formation of a stellar He with degenerate 
electrons immediately after the Main Sequence (MS) phase.

These stars burn He in an electron degenerate core. 

Intermediate mass stars: MHeF  m*   MC-O

MC-O is the limiting mass for the formation of a C-O core with degenerate 
electrons. 

These stars burn He in a core with non-degenerate electrons and, after He 
exhaustion, develop a C-O core with degenerate electrons

Massive stars: m*  MC-O

Stars that do not develop a C-O core with degenerate electros. 
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Brown Dwarfs

m*  ML

The value of ML depends on the initial metallicity of the star, on 
the physics of stellar models and  the models atmospheres. 

Most models give ML~ 0.08-0.09 M


Brown dwarfs are relevant as a dark matter component. 

Regarding chemical evolution, they remove gas from the ISM thus 
preventing its processing.
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Low mass stars

Stars with ML  m*/M  0.5 burn H in their centres, but develope
a core of degenerate electrons and never reach the central 
temperatures required for the ignition of He.

Stars with 0.5  m*/M  MHeF go through the MS and Red Giant 
(RG, H shell burning ) phases and ignite He in an electron 
degenerate core (He flash). 

After this, they go through the Horizontal Branch (HB), Asymptotic 
Giant Branch (AGB) and Planetary Nebulae (PN).

They end their lives as C-O White Dwarfs
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Low mass stars 

12C can be transformed into  13C and 14N at the base of the 
envelope during inter-phase pulses → “hot bottom burning” 
(HBB).

During the phases of  RGB, AGB and PN, these stars loose mass 
(~40%). These is the only way in which they return the processed 
material to the ISM. a

The exact value of MHeF depends of the treatment of convection.. 

In the absence of “overshooting” and mass loss, MHeF= 2.2 M


Taking into account overshooting, MHeF= 1.85 M

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Intermediate mass stars

The most important phase for the ISM metal enrichment is the 

AGB phase. During this phase several dredge-ups are produced 

and the chemical elements synthesised in the stellar nucleus can 

be transported to the surface and ejected to the ISM. These 

dredge-ups take place between successive thermal pulses, i.e., 

He flashes in the burning shell. 

In the convective He burning shell neutron-rich nuclei are 

produced with the solar distribution of “s” elements. 

During dredge-ups these isotopes, and also 12C are brought up to 

the convective envelope. 
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Intermediate mass stars

Evolutionary tracks for stars of 

different masses: 1, 5 y 25 M


Iben, I. 1985, QJRAS, 26, 1
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Dredge-up processes in intermediate mass 

stars

Stars experiment different dredge-
up episodes during their 
evolution: 

1est dredge-up. It takes place at 
the base of the RGB for stars of 
all masses. 

2nd dredge-up. It happens at the 
beginning of the AGB phase for 
stars with masses M> 3.5-4 M



3erd dredge-up. It takes place 
during thermal pulses in the AGB 
phase in stars with masses 
M>1.2-1.5 M



Hot Bottom Burning (HBB). It 
happens in the most massive 
stars of the AGB  (M> 3.5-4 M


)

Due to the dredge-up episodes, part of the 
elements synthesysed in the deep stellar 
ineteriors are brought up to the surface. 
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Convective overshooting effects

It increases the size of the 
stellar He core for a given 
value of its initial mass

It also increases the stellar 
luminosity

The importance of these 
effects can depend on 
stellar metallicity. 

The relation between the 
final size of the He core 
and the metallicity is not a 
monotonic function Tornambè & Chieffi, 1986, MNRAS, 220, 

129

M
C

-O
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Massive stars

MC-O  m*/ M 10-12 → They burn C in a non-degenerate core 
and end their lives as type II SNe. 

Those with 2.5  MC-O/ M

 2.5 ignite O in a  Ne-O degenerate 

core. Their initial masses in classical models are 10 and 12 M


. 
In models with overshooting these masses are between 6.6 y 10 
M
 .. They end up their lives as electro-capture SNe and leave a 

neutron star as remnant of ~ 1.3 M


(Nomoto, 1987: ApJ, 322, 
206).

Stars with masses between 10-12  m*/ M MWR evolve through 
the six hydrostatic nuclear fusion cycles up to the formation of Fe 
nuclei and explode as iron-core collapse SNe. leaving a NS or a 
BH as remnant. MWR is the limiting mass for the formation of WR 
stars. Theses stars suffer enormous mass losses that strip them of 
their H-He envelopes. 
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Massive stars

Stars with masses MWR  m*/ M 100 go through the WR phase 

and can end their lives  as Type Ib SNe (no H lines in their 

spectra).

If the proto NS exceeds the NS limiting mass (1.4-2.2 M


) , 

the star collapses directly to a BH without SN explosion. 

Accretion onto the BH can generate  ray bursts→ hyper nova 

(Mc Fayden & Woosley, 1999: ApJ 524, 262).

The value of MWR depends on the mass loss suffered by the WR 

that, in turn, depends on the stellar metallicity. For solar metallicity 

MWR  40 M


(Maeder 1992: A & A, 264, 105).
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Massive stars

Stars with m* > 100 M


, after exhaustion of He in their central 

regions, contract and proceed directly to O burning. During this 

phase suffer pair creation (e-,e+). They can end  their lives as 

different types of SN or collapse directly to a BH.
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Contribution from stars of different masses 

to the gas chemical enrichment

m*  0.08 M


→ Never burn H. They do not contribute to 
chemical enrichment. Their mean lifetime is several times longer  
than the age of the universe. 

0.08  m*/ M  0.5 → They burn H but not He. They end their 
lives as He WDs. They do not contribute to the chemical 
enrichment. Their mean lifetime is much longer  than 15 x 1010 yr.

0.5  m*/ M  MHeF → They experiment the He flash. They end 
up their lives as C-O WDs. Their mean lifetime is from ≈109 to 
much longer than  15 x 1010 yr . The stars with m*  > 1 M



contribute to the chemical enrichment in 4He, 14N  and elements 
“s” (e.g.  Ba y Sr). 
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Contribution from stars of different masses 

to the gas chemical enrichment

MHeF  m*/ M  MC-O → They develop a C-O electron 
degenerate core. They end up their lives as C-O WDs. They 
contribute to the chemical enrichment in 4He, 12C, 13C, 14N, 17º and 
“s” elements, produced during shell He burning phase. In models 
with E “overshooting” and mass loss  MC-O is between 4 y 6.6 M



(Maeder & Maynet 1989, A&A, 210, 155; Marigo et al. 1996, A&A, 
313, 545).

The mean live time of these stars is between several times 107

and 109 yr. They eject the processed material to the ISM during 
the AGB and PN phases. Dredge up episodes transport H and He 
burning products to the stellar surface. Envelope burning 
transforms this material (e.g. 12C into 13C and  14N primarios).   
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Contribution from stars of different masses 

to the gas chemical enrichment

MC-O  m* / M  10-12 → They contribute to the chemical 
enrichment in 12C and 14N and maybe some 16O. Their mean life 
times are of the order of several times 107 yr. They explode as 
type II SNa and leave a Ne-O-Mg as remnant. 

10-12  m* / M  MSNII → They are responsible for the 
production of most heavy elements like: 16O, 20Ne, 24Mg, 28Si, 32S, 
40Ca and  “r” elements. They end their lives as type II SNe. 

MSNII  m* / M  100 → These stars becomo WR and end their 
lives as type Ib SNe. They contribute to the chemical enrichment 
in 4He, 12C, 22Ne, 14N and maybe  18O through stellar winds, during 
the WR phase, and in heavy elements through SN explosions. 
Their mean life tiems are around 106 yr. 

m* > 100 M


→ contribute mainly to the chemical enrichment in 
16O.
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Element production in binary systems

It is believed that binary systems can originate SN explosions that 
produce a relevant amount of heavy elements. 

Binary systems can originate SN of types Ia, Ib, Ic and nova 
bursts than can produce appreciable quantities of  7Li and maybe 
13C y 15N and some  Ne, Na, Mg., Al y Si.

The thermonuclear explosion of the system would be preceded by 
accretion of matter from one of the stras onto its WD companion, 
thus surpassing the mass of Chandrasekhar.

This type Ia SN model produces the right amount of 56Ni → 56Co 
→ 56Fe, reproduce their light curves and allows the formation of 
elements of intermediate mass (from C to Si) that are observed in 
their spectra. 
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A WD in a binary system : towards a 

thermonuclear explosion 

WD + 

2 WDs
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Current SNIa model

Light Curve

L

time

56Ni  56Co 56 Fe

Lmax  MNiSupernova Cosmology Project

Thermonuclear explosion of a CO WD
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SNIa progenitor models

He Shell

Flash

Close Binary 

System

White Dwarf 

Merger Binary

Mass 

Transfer

WD
Giant

He Layer

WD

at 

MCh

Central

C Ignition
SN Ia

C/O 

Layer

SN Ia
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Nucleosynthesis summary
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