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Abundance determination methods: 
Stellar abundances

Abundance determinations from stars come from 
measurements of absorption lines

Translation of absorption line strengths into abundances 
require application of stellar atmosphere models

For most main sequence stars, plane-parallel, LTE models 
are enough, but

For stars with  extended envelopes (giant and supergiants) spherical 
geometry is needed

For hot stars NLTE models are needed

In any case, models should be line-blanketed
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Emission and absorption of radiation

Let us consider a light beam through a gas cloud

Two limiting cases arise:
1. Optically thin medium

2. Optically thick medium

The equation of transfer is:
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The optically thin case

Optically thin medium

If the gas is in LTE

For a hot gas, the absorption coefficient is high at the
frequencies of spectral lines
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Optically thin medium

For an optically thin gas, we expect to get a spectrum with strong

emission lines at the frequencies at which  is large.
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Emission line from an optically thin gas

Emission lines produced in an optically thin gas volume with no 

illumination source in the background. 
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The optically thick case

For an optically thick medium

and, in LTE, 

and          the gas radiates as a black body.      

The interior of a star, such as the

Sun, is optically thick and 

produces a continuum spectrum, 

although with absorption lines, 

since the source function S

varies through the stellar interior.
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Emission and absorption agaisnt a 
continuum background

If

The emergent intensity is larger at frequencies at 

which  is large → emission lines on top of a 

continuum background.

The emergent spectrum is reduced at frequencies

at which  is high → absorption lines on top of a 

continuum background.

Again, we have two cases :
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An optically thin gas illuminated by radiation whose intensity is higher than the

source function, produces an absorption. That would be the case for a cold gas 

in the line of sight to a very bright background object. 

Absorption lines produced by neutral gas clouds in the line of sight bteeween the

observer and a bright quasar. 
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Apsorption and emission in the solar 
spectrum

Para un gas ópticamente grueso, en ETL, S (T) = B (T)  que 

aumenta a medida que aumenta  T. Si dT/dr < 0 → S (T) < I

(0) . Este es el caso del espectro óptico del Sol. 

Sin embargo, en el UV la radiación procede de zonas donde 

dT/dr >0  (corona solar). En este caso S (T) > I (0) y se 

observa un espectro de emisión sobre el contínuo.

For an optically thick gas in LTE, S (T) = B (T)  that increases as  T 

increases.

If dT/dr < 0 → S (T) < I (0). This is the case of the optical spectrum of the

Sun. 

But in the UV, the radiation comes from regions where dT/dr >0  (solar 

corona). In this case, S (T) > I (0) and an emission spectrum on top of the

continuum is observed. 
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Determinación de abundancias en 
estrellas

The determination of stellar abundances is made through
the analysis of absorption lines in high resolution spectra.

This analysis can be made for stars in the Solar 
Neighbourhood and for brighest stars in clusters and in 
some galaxies of the Local Group.

Definición de anchura equivalente
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Spectral lines involve transitions

between different energy states

of ions, atoms or molecules.

The opacity in the lines is due to

different physical processes

occurring in the stellar material,

which determine the final

absorption coefficient.

The variation of this coefficient

with wavelength configures the

profile or shape of the line.

Spectral lines
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Absorption line profile

Line depth

(residual intensity) 
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It’s an adimensional quantity with values between 0 for a very weak line and  

1 for a saturated line.  
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Line measurements

Line intensity

Equivalent width
 Defined as the width of a rectangle 

of height Fc and an area equal to the 
line intensity
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The continuum determination might be 

somewhat difficult
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Line formation: the classical 
view

Photons are sinusoidal 
variations of electro-magnetic 
fields

When a photon passes by an 
electron in an atom, the 
changing fields cause the 
electron to oscillate

Treat the electron as a 
classical harmonic oscillator:
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dipole oscillating in 

the x direction as a 

response to the

electric field E

angular frequency of the wave

resonance frequency

corresponding to the

espectral line wavelength

general solution :        

equation of motion :

If N is the dipole density (each with an only electron) :

Element abundances and the chemical evolution of the cosmos     Ángeles I. Díaz 17February 2025



Atomic absorption coefficient

Classically, the absorption coefficient is given by:

 and integrating for all frequencies :
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Classical damping constant

γ is the classical damping constant and, for a classical 
harmonic oscillator, the shape of the spectral line depends 
on its size 

For   -0 >>  / 4,  the line falls off as ( -0) 
- 2

γ
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Classical damping line profile

N0 is the number of 

bound electrons per 

unit volume
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Look at a thin atmospheric layer between t2 (the deeper layer) and t1

The line intensity at each frequency is proportional to κν

       At line center ν=ν0, and 
line center =0, and 
Half the maximum depth occurs at (ν-ν0)=γ/4π .
In terms of wavelength
In terms of wavelength

Very small – and the same for ALL lines!
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Heisenberg's uncertainty principle:  the electron in an excited state is only 
there for a short time, so its energy cannot have a precise value.  

Since energy levels are "fuzzy”, atoms can absorb photons with slightly 
different energy, with the probability of absorption declining as the 
difference in the photon's energy from the "true" energy of the transition 
increases.  

The FWHM of natural broadening for a transition with an average waiting 
time of to is given by

A typical value of ()1/2 = 2 x 10-4 Å.  Natural broadening is usually very 
small.

The profile of a naturally broadened linen is given by a dispersion profile 
(also called a damping profile) which has a Lorentzianf unctional form:

 where  is the "damping constant."
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Quantum correction: natural 
broadening
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Broadening depends on the 
lifetime of the level

Levels with long lifetimes are 
sharp

Levels with short lifetimes are 
fuzzy

QM damping constants for 
resonance lines may be close to 
the classical damping constant

QM damping constants for other 
Fraunhofer lines may be 5,10, or 
even 50 times bigger than the 
classical damping constant

Quantum corrections: the line profile
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Quantum corrections: the oscillator
strength

We must relate the quantum damping constant to the 
lifetimes of the levels, or the probabilities of a given 
transition to take place. We can do so by …

defining the oscillator strength, f, such as:

f is related to the atomic transition probability Bul : 
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Other broadening mechanisms

Broadening mechanisms contributing to the line profile

Thermal broadening

Collisional broadening

Velocity fields:
• macroturbulence

• microturbulence
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Thermal broadening

Due to the thermal motion, the atoms in the gas have a given 

velocity whose radial produces a Doppler displacement:

The distribution of Δλ (∝ vr)   yields the line profile.  
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This line broadening is

proportional to Δλ0

Thermal broadening
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Thermal broadening is controlled by the thermal (Maxwellian) velocity 
distribution:

     where vr is the line-of-sight velocity component

The Doppler width associated with the velocity v0 (where the variance   
v0

2 = 2kT/m) is :

       and  is the wavelength of line center and μ is the mean molecular 
weight.
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Collisional broadening

Due to the presence of other ions in the vicinity of the absorbent ion 

which perturb its energy levels. The effect depends of the perturber

type:

• n=2➞ p+ or e- over H (lineal Stark)

• n=4 ➞ions or e- over other ions at

high temperature (quadratic Stark)

• n=6➞H over other elements in cold
stars (van der Waals)

Under the impact approximation

Where is the average 
collision time and depends  on the 

atmosphere depth.

      

   

a = const .
g / 4p

( n - n0 )2 +( g n / 4p )2
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Collisional broadening effects
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Velocity fields:  convection

• Macroturbulence ➞ motions 

at a scale larger than the 

photon mean free path. 

• Microturbulence ➞ motions 

at a scale smaller than the 

photon mean free path. 

• Both add components to the 

Doppler broadening.

•  Microturbulence, 

parametrized by vmac  and 

microturbulence, 

parametrized by vmic .
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Velocity fields: rotation

Also a Doppler effect, parametrized by

the projected rotation velocity Vsen i
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Rotational broadening examples
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The total absorption coefficient and 
line profile

Considering all types of broadening, the total 

absorption coefficient is:  

α  = α (natural) + α (Doppler) + α (collisional)

normalised as 

The natural and collisional broadening profiles are 

both of Lorentzian form, therefore we can use an only

Lorentzian profile with

γ =  γnatural + γcollisional
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The total Doppler profile

All velocity dependent broadening mechanisms: thermal, 
turbulence and rotation, combine in a total Gaussian profile 
where

Typical values for ()1/2 are a few tenths of an angstrom.  
The line depth for Doppler broadening decreases 
exponentially from the line center.
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The Voigt profile

The convolution of a dispersion profile and a Gaussian profile is known as the Voigt 
profile.

In general, the shapes of spectra lines are defined in terms of Voigt profiles, which are 
tabulated for their use in computations

The final form of the Voigt profile depends on a parameter α, namely the ratio 
of the damping width γ /2 to the Doppler width ΔνD : α = γ / (2⋅ΔνD)

Voigt functions are dominated by Doppler broadening at small , and by radiation or 
collisional broadening at large 

For weak lines, it’s the Doppler core that dominates

In solar-type stars, collisions dominate , so one needs to know the damping constant 
and the pressure to compute the line absorption coefficient

For strong lines, we need to know the damping parameters to interpret the line.
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Profile comparison

Gaussian
profile

Lorentz
profile
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Shape of absorption lines
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Observed line profile
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Line formation regions

The different parts of a line are formed at different optical

depths in the atmosphere of the star.

The line core is formed in regions of lower optical depths, while the

line wings are formed in regions of higher optical depths.

In normal stars, temperature decreases outward in the atmosphere

→ line cores come from cooler regions than the wings.
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Line formation regions
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Line measurements

Line intensity

Equivalent width
 Defined as the width of a rectangle 

of height Fc and an area equal to the 
line intensity
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Equivalent width and optical depth

The equivalent width is related to the optical depth in the line 
of sight.

We can write and, since

we have

where we have made use of the relation
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Optical depth and number of 
absorbers

The optical depth is related to the column density of 
absorbers along the line of sight (usually measured in cm-2)
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where kν is de volume opacity for transition i → j, aν is the
absorption cross section and ni is the volume number
density, so that τ is adimensional.
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Equivalent width and number of 
absorbers
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that provides the relation between the

equivalent width, Wλ, and the number of absorbers, Ni.
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The equivalent width Wλ of a line is expected to depend on the 

number of atoms N in the atmosphere capable to absorb the 

transition involved, and hence on the temperature and density (or 

pressure) inside the gas, and on the chemical composition of the 

star. 

But also, the strength of a given line will depend on atomic 

properties,  summarized by the f  factor, assumed to be known.

Then:  

    where N stands for the column density of the atoms producing the line

W
l

=W
l
( N .f )

Chemical analysis: the curve of 
growth
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The curve of growth

The curve of growth (CoG) provides  the relation between the 

equivalent width of a line and the  chemical abundance of the  

element producing it. 
τν depends on the profile 

function, i.e., at a given 

frequency the optical 

depth can be greater or 

smaller, depending on ϕν , 

for a given N.

 Then, the CoG is not 

linear and depends on the 

broadening mechanisms 

affecting the line.
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Regions of the curve of growth

As we saw above,

If τ <<1 

This is called the linear part of the CoG. This linear relation 
is independent of the line profile.
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Curve of growth: lineal part
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As the line strength increases, a progressive increase in N
produces no significant change in Wλ. It is said that the line 
is saturated and looks as a plateau in the curve of growth.

The previous integral has to be calculated numerically and 
some approaches can be made to show that
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Curve of growth: saturated part



Curve of growth: saturated part
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Finally, for very strong lines, the Gaussian core is saturated 
and the Lorentzian damping wings dominate.

In that case, it can be shown that

This is called the square-root part of the curve of growth
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Curve of growth: square root part



Curve of growth: square root part
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Curve of growth and line shape
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Empirical curves of growth
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Observational needs for stellar 
abundance work

Curve of growth analysis shows that, for 
weak lines, equivalent widths increase 
linearly with abundance ⇒ weak lines 
are preferred for accurate work

Ideally one requires high resolution (R ~ 
50000 – 100000) high S/N 
spectroscopy

Most stars are too faint (too distant) to 
meet these requirements ⇒ go to lower 
resolution

Interesting (not complete) abundance 
information can be obtained at R ~ 500

Relatively faint (long lived) stars can 
only be observed individually in our 
Galaxy

Studies of stars of different ages can 
reveal chemical history ⇒ Age – 
Metallicity relation

Abundance ratios of different 
elements provide important clues for 
chemical evolution

The brightest giants and supergiants 
can also be observed in external 
galaxies up to ~10 Mpc
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Chemical analysis: synthetic spectra

It requires good knowledge of the broadening sources. The best agreement between models 

and observations is found by minimising residuals:
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Chemical analysis: differential 
analysis

Absolute abundances are sensitive to model errors: the 
different assumptions employed and limits in the knowledge 
of line formation processes and broadening sources.

The use of relative abundances with reference to a star 
similar to the one observed allows to eliminate systematic 
errors.

Many times, relative abundances are calculated with respect 
to the solar abundances:
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Alves-Brito et al. 2006, A&A, 460, 269 Urbaneja et al. 2007

High resolution stellar spectroscopy
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The Chemical Evolution of the Galactic Disk 
Edvardsson et al. 1993, A&A, 275, 101

High resolution spectra (R~ 60,000) of 
189 G-disk dwarfs
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The Chemical Evolution of the Galactic Disk       Edvardsson et al. 1993, A&A, 275, 101
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The age-metallicity relation

Ibukiyama & Arimoto, 2002, A&A394, 927
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Some results for The Galaxy

The halo has a mean abundance of [Fe/H] ≈ -1.6. Lighter 
elements are enhanced over Fe with respect to solar. There 
is no significant abundance gradient.

The Galactic bulge must have formed very rapidly (≤1 Gyr): 
its chemical enrichment is dominated by massive stars; it is 
chemically different from the (local) thin and thick disk; there 
is a clear radial gradient in [Fe/H] outside 600 pc (Baade's 
Window), but apparently no gradient inside this radius.
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The age-metallicity relation from
observations of subgiant stars 

Xiang & Rix, 2022, Nature, 603, 599 

Data from Gaia eDR3 + LAMOST DR7 (250,000 subgiant stars)



It is found that the stellar age–metallicity
distribution p(𝜏, [Fe/H]) splits into two almost disjoint
parts, separated at age 𝜏≃ 8 Ga. The younger part
reflects a late phase of dynamically quiescent Galactic
disc formation with manifest evidence for stellar
radial orbit migration4,5,6; the other part reflects the
earlier phase, when the stellar halo7 and the old α-
process-enhanced (thick) disk8,9 formed. These results
indicate that the formation of the Galaxy’s old (thick) 
disc started approximately 13 Ga ago, only 0.8 Ga 
after the Big Bang, and 2 Ga earlier than the final 
assembly of the inner Galactic halo.
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Some results for The Galaxy

Xiang & Rix, 2022, Nature, 603, 599 
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Stellar abundance lower limits

The lowest stellar metallicity has been 
found for SMSS J031300.36-
670839.3, a sub-giant halo star, with 
an abundance upper limit of -6.5 ⩽ 
[Fe/H] ⩽ -7.1 (Keller et al. 2022: Nature 506, 463; 

Bessel et al. 2015, ApJL,, 806, L16; Nordlander et al. 2017, 

A&A, 597, 6) and large over-abundances 
of C and Mg relative to Ca.

It is suggested that the star formed
from the iron-poor ejecta of a single 
massive star Population III low energy
supernova (SN) which yield large
quantities of light elements such as C, 
but very Little Fe.

These low energy SN might have 
been rather common in the early 
universe.
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The metallicity distribution function of 
halo stars

Schörck et al. 2009, A&A, 507, 817
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Some results for The Galaxy

Thick disc: metal abundances overlap with those of the halo 
(lower end) and the thin disc (high end). No vertical gradient 
in [Fe/H] is found.

Thin disc: results come from stars in open clusters and B 
main sequence stars. Accurate abundances must come 
from NLTE models. Results should agree with nebular work.
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Zoccali et al. 2008, A&A, 486, 177
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GAIA- Contribution
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https://www.youtube.com/watch?v=0UkV8

OAWE9k

Recio-Blanco et al. 2023, A&A 674, A29 :
Gaia Data Release 3 Analysis of RVS spectra
using the General Stellar Parametriser from
spectroscopy

https://www.youtube.com/watch?v=0UkV8OAWE9k
https://www.youtube.com/watch?v=0UkV8OAWE9k


Abundances from integrated spectra

Apart from the case of galaxies in the Local Group, stars in 
galaxies appear unresolved and  abundances cannot be obtained 
from stellar spectroscopy.

Some knowledge can be extracted from the analysis of the stellar 
light integrated along the line of sight.

Models of stellar populations in which the integrated galaxy 
spectra is fitted are used. 

Element abundances and the chemical evolution of the cosmos     Ángeles I. Díaz 71February 2025



Abundances from integrated spectra

Simple stellar populations, (SSP: single age, single metallicity) are 
used in combination. Their spectral energy distributions (SEDs) 
are calculated using stellar evolutionary isochrones that provide 
information on age and metallicity and theoretical and/or observed 
individual stellar spectra.

The existing degeneracy  between age and metallicity for a stellar 
population (both old ages and high metallicities produce, to first 
order, the same effects in the integrated light) complicates the 
matter. 
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Globular star clusters: a Single Stellar
Population?

Frequently stars form in clusters. 

A molecular cloud can contain thousend of dense cores that will evolve
to become stars. 

In principle, we can consider that cluster stars :

have the same age, 

are located a the same distance form the observer,

are all affected by the same interstellar reddening, 

have the same metallicity, corresponding to the cloud out of whichthe
cluster formed.

Two different kinds of star clusters are considered, related to the
different stellar populations in the Galaxy:

Open ( or galactic) clusters→ Population I

Globular clusters→ Population II
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Open clusters

Las  Pléyades NGC  3293
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Open cluster characteristics

Size: 1.5  - 20 pc diameter.

Star number: n x 10 – n x 100 .

Distance between stars:  1 pc .

Location: in the Galaxy disc associated to the spiral arms.

Number of clusters catalogued in the MWG:  400

Numer of clusters estimated in the Galaxy  20,000

Kinematics: Moving in almost circular orbits around the
galactic centre. 
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Diagrama Color Magnitud de 
cúmulos abiertos

CMD of open clusters
showing a Main Sequence
(MS) populated by hot and 
luminous stars and some
Red Supergiants (RSG). 

In some cases, some Pre-
MS stars are observed. 

Some of them show well
developped Giant Branches
(GB).
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CMD of the Hyades Cluster



Colour-Magnitude Diagrams of open 
clusters
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Globular clusters

M3 Omega Cen
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Características de los cúmulos 
globulares

• Size:  40 pc diameter.

• Star number: n x 105 .

• Distance between stars :  0.1 pc .

• Location: in the Galaxy halo.

• Number of clusters catalogued in the Galaxy:  150 .

• Kinematics : Moving around the galactic centre in elongated

eliptical orbits passing through the Galaxy disc every 108 a 

aproximately.
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Colour-Magnitude Diagram
of Globular Clusters
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Model fitting: age determination

Evolutionary tracks for stars of solar metallicity (grey lines) and isochrones (red lines) 

corresponding to stars with the same age. Stellar masses are between 0.15 y120 M⊙ and 

isochrone ages are:  log(t/a)= 6, 7, 8, 9 and 10.
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The importance of deriving accurate
globular cluster metallicities

Globular clusters ages provide unique constraints on
cosmology and early epochs of galaxy formation. 

Globular clusters ages cannot be determined without the
precise knowledge of their chemical composition

An error of 0.3 dex in the overall heavy element abundance
of a cluster ([Fe/H]) translates into an error of about 3 Gyr in 
the age derived from fitting an isochrone to accurately
derived photometric main-sequence.
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The metal abundance of
Globular Clusters

The metallicity of Globular Clusters is determined mainly from

spectroscopic observations of of their brighest stars, usually red 

giant o or red supergiant stars. 

The globular cluster metallicity is usually written as:

[Fe/H] = log (Fe/H) – log (Fe/H)

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Photometry: colour of the Giant
Branch  
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Da Costa and Armandroff, 1990

• Giant branch loci in the MI ,( V — I)0

plane of six standard clusters of
different (solid curves) together with
the giant branches of M5 (dotted-
dashed curve) and NGC 362 (dashed
curve). 

• Metallicity increases to the right.



Spectroscopy of bright individual stars: 
the globular cluster Metallicity scale

Medium-to-high resolution spectroscopy
present problems with continuum placement
(see Cohen, 1978: ApJ 223, 487 and Pilachowski et al. 1980: 

ApJ 236, 508).

The use of the CaII Triplet lines in the red part
of the spectrum came to solve this problem (see, 

for example, Armandroff and Da Costa,1991: AJ 101, 1329).

Rutledge et al. 1997 (PASP 109, 883) obtained
CCD spectra with ~ 4 Å resolution in the region
7250-9000 Å for 976 stars lying near the red-
giant branches in color-magnitude diagrams of
52 Galactic globular clusters. Measurements of
the equivalent widths of the infrared calcium
triplet lines yielded a relative metal-abundance
ranking with the necessary precisión. 
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Integrated spectroscopy

Integrated high resolution spectra can also be used to derive globular cluster
metallicities. 

It requires also the use of well sampled CMD of the clusters and theoretical isochrones
in combination with standard stellar atmosphere and spectral synthesis codes.

Examples of this procedure can be found in Larsen et al. 2017: A&A, 601, 96.

This method can also be used for globular clusters in external galaxies (Larsen et al 2018: 

A&A, 613, 56).
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Distribution of the metallicity of globular 
clusters in the Galaxy

Zinn, R. 1985, ApJ, 293, 424
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http://adsabs.harvard.edu/abs/1985ApJ...293..424Z


Globular Star Clusters: a Single Stellar
Population?

Three observational facts question the paradigm of the assumption of
GCs as simple stellar populations. 

• Chemical anomalies in the chemical composition of stars in GCs which is not
homogeneous in the elements involved in hot bottom burning, such as C, N, O, 
Na, Al, and in some cases Mg, Si, and K. Stars with lower N and Na and higher
C and O resemble Galactic-field stars with the same metallicity, while stars
enhanced in N and Na and depleted in C and O are mostly found in GCs. 

• The so called “second parameter” of the Horizontal Branch (HB), mainly that
GCs with similar average metallicities show different (HB) morphologies. 

• The growing evidence of split Main Sequences (MS), Red Giant ranches 
(RGBs), and Sub-Giant Branches (SGBs) in the CMD of GCs.

These findings point to the fact that CMDs of nearly all GCs are 
composed of multiple sequences that can be followed continuously
implying the presence of multiple stellar populations.

A new paradigm is arising for the formation of massive star clusters, 
which includes several episodes of star formation.
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Multiple stellar populations in Globular 
Star Clusters
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(See reviews in Gratton, Carretta and Bragaglia, 2012 ( 2012A&ARv..20...50)

and Miloni and Marino, 2022 (Universe, 8, 359)
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