
NUMERICAL MODELS

MODELS FOR THE EVOLUTION OF THE 

MWG



The numerical models solve directly the equations systems: all

useful inputs may be included.

There is a large number of models with different hypotheses about

the ingredients, IMF, SFR, stellar yields, or scenario.
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Early numerical chemical evolution models 

Algunos de estos modelos son la base de los siguientes:
Lacey & Fall (1983, 1985):
• Disc-halo connection

• Radial dependendent infall

Wyse & Silk (1989) 
• Star formation rate depending on galaxy total mass

• Star formation rate dependent on galactic radius

Matteucci (1989) 
• Disc-halo connection

• Radial dependendent infall

• Star formation rate depending on galactic radius and galaxy total mass Dependencia de 
la SFR con el radio y con la masa total

Díaz & Tosi (1984, 1985)
• Multizonal modelo

• Star formation rate depending exponentially decrasing with time

• Gas infall rate constant over the disc (decreasing with galaxy radius)
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The chemical evolution of The Galaxy

Halo and  corona (up to ~ 100 kpc)

The thick disc (1 kpc)

The thin disc (300 pc)

The spiral arms (density waves) 

Substructures

Open clusters and OB associations (~1500 known)

Globular clusters (~ 170 known)

Dwarf galaxy remnants (Saggitarius ?)

Gaseous structures: diffuse gas, molecular clouds, gaseous 
shells, etc …
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Structure components of The Galaxy 
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The formation of The Galaxy

Eggen, Lynden-Bell & 
Sandage (1962) proposed a 
rapid collapse in about n x 
108 yr.

Searle & Zinn (1978) 
proposed a central collapse 
while the external halo would 
have formed by accretion of 
small neigbouring systems.
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Different approaches to modelling 

The Galaxy

Serial sequence:   halo and  disc (thick and thin) are formed in a 
continuous sequence (Lacey & Fall 1985; Matteucci & Francois 
1989).

Parallel Sequence: the different components of the Galaxy 
evolve at different rates but are interconnected (Ferrini et al. 1994; 
Pardi, Ferrini & Matteucci 1995).

Different formations of disc and halo: they would form in two 
different infall episdodes (e.g. Chiappini, Matteucci & Gratton
1997; Alibes, Labay & Canal 2001).

Stochastic processes: mixing would not be efficient, especially 
at the beginning of halo evolution (e.g. Tsujimoto et al. 1999; 
Argast et al. 2000; Oey 2000).
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Gas infall depending on galactrocentric radius 

Halo-disc connection with t constant with R

Infall depending on R

SFR proportional a g
n with n =1 o n =1.5

f ( r ,t )= m
0
e-a rF( t )

F( t )=
e

-t /t
f

t
f
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-T /t
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Results for MWG:

1) n =1 , tf=5.5 Ga, 

or

2) n=1.5, tf=3.5 Ga

Lacey & Fall,1985
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Model results
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The multi-phase chemical evolution mode

MULCHEM  Ferrini, Mollá, Pardi & Díaz 1995

Disc-halo connection: gas infall from the halo forms the disc as a secondary structure. 

Different matter phases are treted separately: 

Diffuse gas 

Moldecular gas 

Massive stars 

Low mass stars

Stellar remnants 

Exchange of matter among different phases according to diverse conversion processes. 

Diffuse gas forms molecular clouds 

Molecular clouds form stars by collisions 

Massive stars interact with surrounding molecular clouds 

Gast return to the ISM by the different processes above
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MULCHEM modelling

The Galaxy is modelled 

as concentrical cylindres

The IMF is determined 

from the molecular cloud 

fragmentation:

F( m )= 2.01m-0.5210
2.01+ logm( )
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MULCHEM ingredients

SFR 

in two steps for the disc

a Schmidt Law for the halo 

Nucleosynthesis:

1) Massive stars → Woosley & 

Weaver (1995)

2) Low and intermediate mass stars 

→ Renzini & Voli (1981)

3) Type I SNe →Nomoto, 

Thielemann & Yokoi (1984) 
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Results for the Solar Neigbourhood 
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Results for the MWG
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The two-infall model for The Galaxy
Chiappini, Matteucci & Gratton 1997

This model proposes two 
main gas accretion 
episodes in the formation of 
The Galaxy. 

During the first one, halo 
and bulge would form. The 
second would give rise to 
the disc. 

In fact, the original model 
tried to reproduce the 
evolution of the two 
components of the disc: 
thin and thick. 
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Gas accretion onto the MWG at present 
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Characteristics of the two-infall model

The SFR follows a Kennicutt-Schmidt Law with  k=1.5, plus a 
dependence on total mass surface density. There is a threshold 
for star formation of 7 M


pc -2.

IMF from  Scalo (1986) normalised over a range  0.1-100 M


Exponentially decreasing infall with different time-scales for the 
inner halo (1-2 Gyr)  and the disc (inside-out formation with 7 Gyr
in the Solar Neighbourhood).

Type Ia SN (WD+RG or MS) (Greggio & Renzini 1983; Matteucci
& Recchi 2001).

Minimum time for explosion of 35 Myr (life-time of 8 M


stars).

Return time for most of the Fe in the SN of 1Gyr depending on 
SFR. 
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SFR threshold effects 
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Predicted SN rate 

Type II SN   (in blue) 

follow the SFR 

Type Ia (in red)  increase 

gradually with a small 

maximum at 1Gyr. 
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Delay effects 

Blue line : only SN II 

produce Fe.

Red line: only sólo SN Ia

produce Fe. 

Black line : SN II produce 

1/3 of Fe and SN 

produce  2/3 of Fe.
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Specific predictions by the two-infall 

model

Adopting a gas density 
threshold for the for SF to 
proceed creates gaps in 
the SFR

These gaps take place 
between the formation of 
the halo and thick disc 
and the thin disc. 
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Different time scales for the disc formation
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G-dwarf Distribution 

 Chiappini et al. (1997) , Alibes et al. (2001)  y Kotoneva et al. (2002) concluded it 

is possible to obtain a good fit to the G-dwarf metallicity distribution only with a 

time scale of 7-8 Myr at the solar galactocentric radius. 
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The evolution of chemical abundances

In this model the space and time evolution of 35 chemical 
elements is calculated: H, D, He, Li, C, N, O, Ne, Mg, Si, S,  Ca, 
Ti, K, Fe, Mn, Cr, Ni, Co, Sc, Zn, Cu, Ba, Eu, Y,  La, Sr plus other 
isotopes (Francois,  et al 2004).

This implies the resolution of a system of 35 equations where 
SFR, IMF, nucleosynthesis and gas accretion are taken into 
account. 

The  yields are those of : WW95 (massive stars),  van den 
Hoeck & Groenewegen 1997, (low and intermediate mass stars) 
and Iwamoto et al. 1999, for type Ia SN.
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Relative abundance relations 
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C and N evolution w.r.t. Fe

Models by  Chiappini et al. 1997. The 

green line is a heuristic model in which all 

N is of primary origin. 

Dotted lines correspond to models by 

Chiappini et al. 2006 in which massive stars 

with rotation produce substantial amounts of 

N at low metallicities. 
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Abundance gradients

A characteristic of 
these models is that 
gradients steepen with 
time  (from blue to red)
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Time evolution of gradients in the multi-

phase model

In multi-phase models the 

gradients get flatter with 

time, which is more 

compatible with 

observations. 
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Time evolution of gradients
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The time evolution of abundance gradients

The time evolution of abundance gradients has been studied in several 
works, and different predictions have been producedby different authors  
using chemical evolution models. 

Some authors predicted that the gradient steepens with time (Chiappini 
et al. 2001; Mott et al. 2013), whereas others suggested that the gradient 
flattens in time (Prantzos & Boissier 2000; Mollá and Díaz 2005; 
Vincenzo & Kobayashi 2018).

The discrepancy between different model predictions is due to the fact 
that chemical evolution is very sensitive to the prescriptions of the 
physical processes that lead to the differential enrichment of inner and 
outer discs, hence and the flattening or steepening of gradients with time 
depends on the interplay between infall rate, SFR along the disc, and the 
presence of a threshold in the gas density for star formation.
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It seems that the inside-out scenario is a key ingredient for the 
formation of Galactic discs but cannot constitute the only 
mechanism to  explain abundance patterns at different 
galactocentric distances and abundance gradients.

Other possible effects can be:

a variable star formation efficiency combined with radial gas 
flows

radial migration could have an effect, although this may not be 
very important in the case of the Milky Way.

different recipes for the star formation process or gas accretion 
mechanisms can provide very different predictions for the 
abundance gradients,

The time evolution of abundance gradients
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The formation of the galactic bulge

Accretion of other minor 
systems formed earlier that 
finally will emerge in the galactic 
centre. 
Accumulation of the gas coming 
from the halo (or the disc) in the 
galactic centres, with its 
subsequent evolution. 
The first model for the chemical 
evolution of the bulge was made 
by Matteucci & Brocato (1990). 
It postulates a rapid formation 
(<1 Ga)  from the gas coming 
from the halo that evolves 
rapidly with a high star formation 
efficiency. 
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The bulge evolution in the multi-phase 

model
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Evolution of the gas content 
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The stellar metallicity distribution
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Conclusions about the chemical evolution of 

The Galaxy

The best models for the galactic bulge suggest this is rather old and was 
formed in a short time scale, with a high star formation efficiency

The SN G-dwarf metallicity distribution can be reproduced only if the disc 
has formed by a process of slow accretion infall. The time scale for the 
formation of the disc in the SN is between 6 and 8 Ga. 

The relative abundances [X/Fe] vs [Fe/H] can be interpreted in the light 
of the delay existing between the appearance of SN II y SN Ia. These 
relations suggest a time scale for the thick disc formation between 1.5 
and 2.0 Ga.

The reproduction of the SFR, gas distributions and abundance gradients 
implies the inside-out formation of the disc, with a SF efficiency that 
reaches its maximum earlier in the inner disc zones and moves 
throughout the disc with time.
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